Pairing and continuum effects on low-frequency quadrupole vibrations in deformed Mg isotopes close to the neutron drip line

[1]  T. Inakura,et al.  Mixed representation RPA calculation for octupole excitations on superdeformed states in the 40Ca and neutron-rich sulfur regions , 2005, nucl-th/0512058.

[2]  Kenichi Yoshida,et al.  Dynamic pairing effects on low-frequency modes of excitation in deformed Mg isotopes close to the neutron drip line , 2005, nucl-th/0507047.

[3]  M. Yamagami Continuum effects for many-body correlations in nuclei close to the neutron drip line , 2005 .

[4]  Kenichi Yoshida,et al.  Role of low- l component in deformed wave functions near the continuum threshold , 2005, nucl-th/0509068.

[5]  P. Bortignon,et al.  Giant resonances in exotic spherical nuclei within the RPA approach with the Gogny force , 2005, nucl-th/0506022.

[6]  Kenichi Yoshida,et al.  Comparative Study of Octupole Excitations on Superdeformed States in 32S, 36S, 40Ca and 50S , 2005 .

[7]  Peter Ring,et al.  Relativistic Hartree-Bogoliubov theory: static and dynamic aspects of exotic nuclear structure , 2005 .

[8]  Zhong‐yu Ma,et al.  Low-lying dipole modes in Ne-26,Ne-28 in the quasiparticle relativistic random phase approximation , 2005, nucl-th/0501016.

[9]  N. Giai,et al.  Collective excitations in the inner crust of neutron stars : supergiant resonances , 2004, nucl-th/0411056.

[10]  Takashi Nakatsukasa,et al.  Linear response theory in the continuum for deformed nuclei: Green's function vs time-dependent Hartree-Fock with the absorbing boundary condition , 2004, nucl-th/0409013.

[11]  M. Matsuo,et al.  Di-neutron correlation and soft dipole excitation in medium mass neutron-rich nuclei near drip line , 2004, nucl-th/0408052.

[12]  W. Nazarewicz,et al.  Self-consistent description of multipole strength in exotic nuclei: Method , 2004, nucl-th/0407111.

[13]  P. Ring,et al.  Isotopic dependence of the pygmy dipole resonance , 2004, nucl-th/0404055.

[14]  F. Šimkovic,et al.  Deformed quasiparticle random phase approximation formalism for single- and two-neutrino double β decay , 2004 .

[15]  P. Bortignon,et al.  Dipole states in stable and unstable nuclei , 2004, nucl-th/0406076.

[16]  F. Nowacki,et al.  The N=28 shell closure; from N=Z to the neutron drip line , 2004, nucl-th/0403080.

[17]  H. Sagawa,et al.  Continuum QRPA response for deformed neutron-rich nuclei , 2003, nucl-th/0307078.

[18]  N. Van Giai,et al.  Pairing effects on the collectivity of quadrupole states around 32Mg , 2003, nucl-th/0307051.

[19]  K. Hagino,et al.  Structure of positive energy states in a deformed mean-field potential , 2003, nucl-th/0305034.

[20]  E. Vigezzi,et al.  Collective excitations in superfluid nuclei with finite-range interactions , 2003 .

[21]  B. K. Agrawal,et al.  Current status of the nuclear matter incompressibility coefficient as deduced from data on compression modes , 2003 .

[22]  W. Nazarewicz,et al.  Systematic study of deformed nuclei at the drip lines and beyond , 2003, nucl-th/0307049.

[23]  Y. Hashimoto,et al.  Accurate random-phase approximation calculation of low-lying states on a three-dimensional Cartesian mesh , 2003 .

[24]  Paul-Henri Heenen,et al.  Self-consistent mean-field models for nuclear structure , 2003 .

[25]  P. Ring,et al.  QUASIPARTICLE RANDOM PHASE APPROXIMATION BASED ON THE RELATIVISTIC HARTREE-BOGOLIUBOV MODEL. II. NUCLEAR SPIN AND ISOSPIN EXCITATIONS , 2004, nucl-th/0402094.

[26]  A. S. Umar,et al.  Axially symmetric Hartree-Fock-Bogoliubov Calculations for Nuclei Near the Drip-Lines , 2002, nucl-th/0205042.

[27]  K. Yabana,et al.  Solving the RPA Eigenvalue Equation in Real-Space , 2002 .

[28]  H. Sagawa,et al.  Isoscalar dipole strength in Pb-208(82)126: The spurious mode and the strength in the continuum , 2002 .

[29]  L. Robledo,et al.  Correlations beyond the mean field in magnesium isotopes: angular momentum projection and configuration mixing , 2002, nucl-th/0204074.

[30]  N. Giai,et al.  Continuum quasiparticle random phase approximation and the time-dependent Hartree-Fock-Bogoliubov approach , 2002, nucl-th/0203056.

[31]  W. Nazarewicz,et al.  Gamow-Teller strength and the spin-isospin coupling constants of the Skyrme energy functional , 2001, nucl-th/0112056.

[32]  I. Hamamoto,et al.  Low-lying appreciable Gamow-Teller strength in deformed neutron-rich nuclei , 2001 .

[33]  N. Giai,et al.  Pairing and continuum effects in nuclei close to the drip line , 2001, nucl-th/0109058.

[34]  H. Sagawa,et al.  Shape, shell structure, and low-lying strong octupole strength in 60 20 Ca 40 , 2001 .

[35]  M. Matsuo Continuum linear response in coordinate space Hartree–Fock–Bogoliubov formalism for collective excitations in drip-line nuclei , 2001, nucl-th/0105025.

[36]  T. Otsuka,et al.  Single particle properties of nuclei on and beyond the drip line , 2001 .

[37]  H. Sagawa,et al.  Continuum QRPA in the coordinate space representation , 2001, nucl-th/0102042.

[38]  P. Ring,et al.  Collectivity of the low-lying dipole strength in relativistic random phase approximation , 2001, nucl-th/0101063.

[39]  M. Matsuo,et al.  Symmetry-unrestricted Skyrme–Hartree–Fock–Bogoliubov calculations for exotic shapes in N=Z nuclei from 64Ge to 84Mo , 2000, nucl-th/0010087.

[40]  T. Duguet,et al.  Rotational properties of No-252, No-253, No-254 influence of pairing correlations , 2000, nucl-th/0005040.

[41]  P. Reinhard,et al.  Pairing gaps from nuclear mean-fieldmo dels , 2000, nucl-th/0005028.

[42]  H. Sagawa,et al.  Response of light drip line nuclei to spin dependent operators , 1999 .

[43]  A. Bulgac Hartree--Fock--Bogoliubov Approximation for Finite Systems , 1999, nucl-th/9907088.

[44]  J. Dobaczewski,et al.  Continuum effects for the mean-field and pairing properties of weakly bound nuclei , 1999, nucl-th/9905031.

[45]  W. Nazarewicz,et al.  Shape coexistence and the effective nucleon-nucleon interaction , 1999, nucl-th/9903037.

[46]  P. Heenen,et al.  Deformation of nuclei close to the two-neutron drip line in Mg region , 1996, Acta Physica Hungarica A) Heavy Ion Physics.

[47]  Hamamoto,et al.  Single-particle and collective properties of drip-line nuclei. , 1996, Physical review. C, Nuclear physics.

[48]  Berger,et al.  Mean-field description of ground-state properties of drip-line nuclei: Pairing and continuum effects. , 1995, Physical review. C, Nuclear physics.

[49]  J. Dobaczewski,et al.  Superdeformed rotational bands with density dependent pairing interactions , 1995 .

[50]  Sheikh,et al.  Nuclear shell structure at particle drip lines. , 1994, Physical review letters.

[51]  Dobaczewski,et al.  Particle-drip lines from the Hartree-Fock-Bogoliubov theory with Skyrme interaction. , 1993, Physical review. C, Nuclear physics.

[52]  G. Bertsch,et al.  Pair correlations near the neutron drip line , 1991 .

[53]  Curutchet,et al.  Resonant random phase approximation. , 1989, Physical review. C, Nuclear physics.

[54]  Jacques Treiner,et al.  Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line , 1984 .

[55]  H. Flocard,et al.  Deformation properties of osmium, platinum, mercury isotopes from self-consistent calculations: Influence of the pairing treatment , 1981 .

[56]  A. Klein Nuclear collective motion. , 1980, Science.

[57]  G. Bertsch,et al.  Nuclear response in the continuum , 1975 .

[58]  G. Breit,et al.  Nuclear Structure, Vol. 1 , 1970 .

[59]  R. H. Lemmer,et al.  Nuclear scattering in the random phase approximation , 1968 .

[60]  E. GWYNNE JONES,et al.  Nuclear Structure , 1932, Nature.