Asymptotics for Some Proximal-like Method Involving Inertia and Memory Aspects

AbstractGiven a Hilbert space H and a closed convex function Φ:$H\rightarrow{\mathbb{R}} \cup \{+\infty\}$, we consider the inertial proximal algorithm $$ x_{n+1}-x_n-\alpha_n(x_n-x_{n-1})+\beta_n\partial\Phi(x_{n+1})\ni 0, \qquad \qquad \qquad \qquad({\mathcal{A}}) $$where (αn) and (βn) are nonnegative sequences. The notation $\partial \Phi$ stands for the subdifferential of Φ in the sense of convex analysis. This algorithm can be viewed as the implicit discretization of a continuous gradient system involving a memory term. We give conditions that ensure that a suitable discrete energy decreases to $\inf\Phi$ as n→ + ∞. When Φ has a unique minimum, the question of the convergence of (xn) is solved. In the case of multiple minima, it is proved that if $\left(\prod_{k=1}^n \alpha_k\right)\not \in l^1$ and if a suitable geometric condition on the set argmin Φ is fulfilled, then non stationary sequences of (A) cannot converge.

[1]  N. Bourbaki Espaces vectoriels topologiques , 1955 .

[2]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[3]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[4]  J. Hiriart-Urruty New concepts in nondifferentiable programming , 1979 .

[5]  Jean-Louis Goffin,et al.  The Relaxation Method for Solving Systems of Linear Inequalities , 1980, Math. Oper. Res..

[6]  W. Oettli,et al.  Advances in Optimization , 1992 .

[7]  B. Lemaire About the Convergence of the Proximal Method , 1992 .

[8]  K. Kiwiel The Efficiency of Subgradient Projection Methods for Convex Optimization , 1996 .

[9]  Andrzej Cegielski,et al.  A method of projection onto an acute cone with level control in convex minimization , 1999, Math. Program..

[10]  Felipe Alvarez,et al.  On the Minimizing Property of a Second Order Dissipative System in Hilbert Spaces , 2000, SIAM J. Control. Optim..

[11]  A. Cegielski Obtuse cones and Gram matrices with nonnegative inverse , 2001 .

[12]  H. Attouch,et al.  An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping , 2001 .

[13]  Paul-Emile Maingé,et al.  NUMERICAL APPROACH TO A STATIONARY SOLUTION OF A SECOND ORDER DISSIPATIVE DYNAMICAL SYSTEM , 2002 .

[14]  A. Moudafi,et al.  Convergence of a splitting inertial proximal method for monotone operators , 2003 .

[15]  Heinz H. Bauschke,et al.  Reflection-Projection Method for Convex Feasibility Problems with an Obtuse Cone , 2004 .

[16]  Alexandre Cabot,et al.  An Inertial Proximal Algorithm with Dry Friction: Finite Convergence Results , 2006 .

[17]  S. Gadat,et al.  On the long time behavior of second order differential equations with asymptotically small dissipation , 2007, 0710.1107.

[18]  Paul-Emile Maingé,et al.  Convergence of New Inertial Proximal Methods for DC Programming , 2008, SIAM J. Optim..

[19]  Alexandre Cabot,et al.  Asymptotics for a gradient system with memory term , 2009 .

[20]  Sébastien Gadat,et al.  Second-order differential equations with asymptotically small dissipation and piecewise flat potentials , 2009 .