A new iterative method to compute nonlinear equations

The aim of this paper is to construct a new efficient iterative method to solve nonlinear equations. The new method is based on the proposals of Abbasbandy on improving the order of accuracy of Newton-Raphson method [S. Abbasbandy, Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method, Applied Mathematics and Computation 145 (2003) 887-893] and on the proposals of Babolian and Biazar on improving the order of accuracy of Adomian's decomposition method [E. Babolian, J. Biazar, On the order of convergence of Adomian method, Applied Mathematics and Computation 130 (2002) 383-387]. The convergence of the new scheme is proved and at least the cubic order of convergence is established. Several examples are presented and compared to other methods, showing the accuracy and fast convergence of this new method. Also, it is shown in this paper, that the modified Adomian's method developed by Babolian and Biazar to solve nonlinear equations [E. Babolian, J. Biazar, Solution of nonlinear equations by modified Adomian decomposition method, Applied Mathematics and Computation 132 (2002) 167-172] should be slightly modified, due to the fact that convergence of Adomian's method does not ensure convergence of the modified method. An example illustrates this fact, which, unlike what is claimed by the authors, does not converge with their method, but with a simple different choice of the zero component becomes convergent.

[1]  Jafar Biazar,et al.  Solution of nonlinear equations by modified adomian decomposition method , 2002, Appl. Math. Comput..

[2]  Jafar Biazar,et al.  Solution of wave equation by Adomian decomposition method and the restrictions of the method , 2004, Appl. Math. Comput..

[3]  Y. Cherruault Convergence of Adomian's method , 1989 .

[4]  L. Gabet,et al.  The theoretical foundation of the Adomian method , 1994 .

[5]  G. Adomian Nonlinear Stochastic Operator Equations , 1986 .

[6]  Saeid Abbasbandy,et al.  Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method , 2003, Appl. Math. Comput..

[7]  Y. Cherruault,et al.  Convergence of Adomian’s method applied to integral equations , 1999 .

[8]  G. Adomian Explicit solutions of nonlinear partial differential equations , 1997 .

[9]  George Adomian,et al.  Solving Frontier Problems of Physics: The Decomposition Method , 1993 .

[10]  Y. Cherruault,et al.  The decomposition method applied to the Cauchy problem , 1999 .

[11]  Giuseppe Saccomandi,et al.  New results for convergence of Adomian's method applied to integral equations , 1992 .

[12]  Wenhai Chen,et al.  An algorithm for Adomian decomposition method , 2004, Appl. Math. Comput..

[13]  Y Cherruault,et al.  Further remarks on convergence of decomposition method. , 1995, International journal of bio-medical computing.

[14]  M. J. Pujol,et al.  A new formulation of Adomian method: Convergence result , 2001 .

[15]  G. Adomian A new approach to nonlinear partial differential equations , 1984 .

[16]  Y. Cherruault,et al.  Practical formulae for the calculus of multivariable adomian polynomials , 1995 .

[17]  Y. Cherruault,et al.  Decomposition methods: A new proof of convergence , 1993 .

[18]  Y. Cherruault,et al.  Convergence of Adomian's method applied to nonlinear equations , 1994 .

[19]  Y. Cherruault,et al.  New ideas for proving convergence of decomposition methods , 1995 .

[20]  Jafar Biazar,et al.  On the order of convergence of Adomian method , 2002, Appl. Math. Comput..

[21]  Y. Cherruault,et al.  Convergence of Adomian's method applied to differential equations , 1994 .

[22]  George Adomian,et al.  A new approach to the heat equation — An application of the decomposition method , 1986 .