Ultrasound calibration allows for ultrasound images to be incorporated into a variety of interventional applica tions. Traditional Z- bar calibration procedures rely on wired phantoms with an a priori known geometry. The line fiducials produce small, localized echoes which are then segmented from an array of ultrasound images from different tracked probe positions. In conventional B-mode ultrasound, the wires at greater depths appear blurred and are difficult to segment accurately, limiting the accuracy of ultrasound calibration. This paper presents a novel ultrasound calibration procedure that takes advantage of synthetic aperture imaging to reconstruct high resolution ultrasound images at arbitrary depths. In these images, line fiducials are much more readily and accu rately segmented, leading to decreased calibration error. The proposed calibration technique is compared to one based on B-mode ultrasound. The fiducial localization error was improved from 0.21mm in conventional B-mode images to 0.15mm in synthetic aperture images corresponding to an improvement of 29%. This resulted in an overall reduction of calibration error from a target registration error of 2.00mm to 1.78mm, an improvement of 11%. Synthetic aperture images display greatly improved segmentation capabilities due to their improved resolution and interpretability resulting in improved calibration.
[1]
Mohammed Bennani Dosse,et al.
Anisotropic generalized Procrustes analysis
,
2011,
Comput. Stat. Data Anal..
[2]
C. Sensen,et al.
Advanced Imaging in Biology and Medicine
,
2009
.
[3]
T. Peters,et al.
Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery.
,
2000,
Medical physics.
[4]
P A Lewin,et al.
Modified synthetic transmit aperture algorithm for ultrasound imaging.
,
2012,
Ultrasonics.
[5]
Po-Wei Hsu,et al.
Freehand 3D Ultrasound Calibration: A Review
,
2009
.
[6]
P. Schönemann,et al.
A generalized solution of the orthogonal procrustes problem
,
1966
.
[7]
Kristoffer Lindskov Hansen,et al.
In vivo evaluation of synthetic aperture sequential beamforming.
,
2012,
Ultrasound in medicine & biology.
[8]
Yangmo Yoo,et al.
Synthetic aperture imaging in breast ultrasound: a preliminary clinical study.
,
2012,
Academic radiology.