Linear representations of convolutional codes over rings

In this paper we extend the relation between convolutional codes and linear systems over finite fields to certain commutative rings through first order representations . We introduce the definition of rings with representations as those for which these representations always exist, and we show that finite products of finite fields belong to this class. We develop the input/state/output representations for convolutional codes over these rings, and we show how to use them to construct observable convolutional codes as in the classical case.

[1]  Margreta Kuijper,et al.  First order representations of linear systems , 1994 .

[2]  W. Vasconcelos On finitely generated flat modules , 1969 .

[3]  Margreta Kuijper,et al.  Autonomicity and the absence of free variables for behaviors over finite rings , 2006 .

[4]  E. Zerz On multidimensional convolutional codes and controllability properties of multidimensional systems over finite rings , 2010 .

[5]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[6]  Joachim Rosenthal,et al.  Convolutional codes with maximum distance profile , 2003, Syst. Control. Lett..

[7]  J. L. Massey,et al.  Convolutional codes over rings , 1989 .

[8]  Joachim Rosenthal,et al.  On behaviors and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[9]  John W. Bunce,et al.  Linear Systems over Commutative Rings , 1986 .

[10]  Joachim Rosenthal,et al.  A general realization theory for higher-order linear differential equations , 1995 .

[11]  María Isabel García-Planas,et al.  Alternative tests for functional and pointwise output-controllability of linear time-invariant systems , 2013, Syst. Control. Lett..

[12]  Margreta Kuijper,et al.  On Minimality of Convolutional Ring Encoders , 2008, IEEE Transactions on Information Theory.

[13]  Joachim Rosenthal,et al.  Duality Between Multidimensional Convolutional Codes and Systems , 1999 .

[14]  Rolf Johannesson,et al.  Some Structural Properties of Convolutional Codes over Rings , 1998, IEEE Trans. Inf. Theory.

[15]  Richard D. Wesel,et al.  Convolutional codes and matrix control theory , 1999 .

[16]  James L. Massey,et al.  SYSTEMATICITY AND ROTATIONAL INVARIANCE OF CONVOLUTIONAL CODES OVER RINGS , 1990 .

[18]  E. V. York Algebraic Description And Construction Of Error Correcting Codes: A Linear Systems Point Of View , 1997 .

[19]  Joachim Rosenthal,et al.  BCH convolutional codes , 1999, IEEE Trans. Inf. Theory.

[20]  Sandro Zampieri,et al.  System-theoretic properties of convolutional codes over rings , 2001, IEEE Trans. Inf. Theory.