High‐Performance Solution‐Processed Small‐Molecule Solar Cells Based on a Dithienogermole‐Containing Molecular Donor

its single-crystal structure, in to better calculate the C–Si length.

[1]  A. Heeger,et al.  Design and properties of intermediate-sized narrow band-gap conjugated molecules relevant to solution-processed organic solar cells. , 2014, Journal of the American Chemical Society.

[2]  A. Heeger,et al.  Transient Photocurrent Response of Small‐Molecule Bulk Heterojunction Solar Cells , 2014, Advanced materials.

[3]  A. Heeger,et al.  Silaindacenodithiophene-based molecular donor: morphological features and use in the fabrication of compositionally tolerant, high-efficiency bulk heterojunction solar cells. , 2014, Journal of the American Chemical Society.

[4]  Guillermo C Bazan,et al.  Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells. , 2014, Accounts of chemical research.

[5]  Gregory C. Welch,et al.  Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells , 2014 .

[6]  Yang Yang,et al.  Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency , 2013, Scientific Reports.

[7]  Christopher M. Proctor,et al.  Tri‐Diketopyrrolopyrrole Molecular Donor Materials for High‐Performance Solution‐Processed Bulk Heterojunction Solar Cells , 2013, Advanced materials.

[8]  Christopher M. Proctor,et al.  Film Morphology of High Efficiency Solution‐Processed Small‐Molecule Solar Cells , 2013 .

[9]  Robert P. H. Chang,et al.  Polymer solar cells with enhanced fill factors , 2013, Nature Photonics.

[10]  Thanh Luan Nguyen,et al.  Enhanced Efficiency of Single and Tandem Organic Solar Cells Incorporating a Diketopyrrolopyrrole‐Based Low‐Bandgap Polymer by Utilizing Combined ZnO/Polyelectrolyte Electron‐Transport Layers , 2013, Advanced materials.

[11]  R. Ziessel,et al.  Triazatruxene‐Diketopyrrolopyrrole Dumbbell‐Shaped Molecules as Photoactive Electron Donor for High‐Efficiency Solution Processed Organic Solar Cells , 2013 .

[12]  Daoben Zhu,et al.  A Solution‐Processable Small Molecule Based on Benzodithiophene and Diketopyrrolopyrrole for High‐Performance Organic Solar Cells , 2013 .

[13]  Yongsheng Chen,et al.  High performance photovoltaic applications using solution-processed small molecules. , 2013, Accounts of chemical research.

[14]  Qian Zhang,et al.  Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. , 2013, Journal of the American Chemical Society.

[15]  Jie Zhang,et al.  Efficient Solution‐Processed Small‐Molecule Solar Cells with Inverted Structure , 2013, Advanced materials.

[16]  Gregory C. Welch,et al.  Effect of Bridging Atom Identity on the Morphological Behavior of Solution-Processed Small Molecule Bulk Heterojunction Photovoltaics , 2013 .

[17]  Qibing Pei,et al.  Solution-processed DPP-based small molecule that gives high photovoltaic efficiency with judicious device optimization. , 2013, ACS applied materials & interfaces.

[18]  G. Bazan,et al.  Impact of regiochemistry and isoelectronic bridgehead substitution on the molecular shape and bulk organization of narrow bandgap chromophores. , 2013, Journal of the American Chemical Society.

[19]  T. Brown,et al.  Erratum: Fast and efficient DNA crosslinking and multiple orthogonal labelling by copper-free click chemistry (Chemical Communications (2012) 48 ((DOI: 10.1039/c2cc35084j)) , 2012 .

[20]  Alan J. Heeger,et al.  Narrow-band-gap conjugated chromophores with extended molecular lengths. , 2012, Journal of the American Chemical Society.

[21]  Alan J. Heeger,et al.  Solar cell efficiency, self-assembly, and dipole-dipole interactions of isomorphic narrow-band-gap molecules. , 2012, Journal of the American Chemical Society.

[22]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[23]  A. Facchetti,et al.  A "zig-zag" naphthodithiophene core for increased efficiency in solution-processed small molecule solar cells. , 2012, Chemical communications.

[24]  Thuc‐Quyen Nguyen,et al.  Non‐Basic High‐Performance Molecules for Solution‐Processed Organic Solar Cells , 2012, Advanced materials.

[25]  Yongfang Li,et al.  Small molecule semiconductors for high-efficiency organic photovoltaics. , 2012, Chemical Society reviews.

[26]  M. Heeney,et al.  A comparison between dithienosilole and dithienogermole donor–acceptor type co-polymers for organic bulk heterojunction photovoltaic devices , 2012 .

[27]  Peter Bäuerle,et al.  Small molecule organic semiconductors on the move: promises for future solar energy technology. , 2012, Angewandte Chemie.

[28]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[29]  M. McLachlan,et al.  Comparative Optoelectronic Study between Copolymers of Peripherally Alkylated Dithienosilole and Dithienogermole , 2012 .

[30]  Claire H. Woo,et al.  Efficient Small Molecule Bulk Heterojunction Solar Cells with High Fill Factors via Pyrene‐Directed Molecular Self‐Assembly , 2011, Advanced materials.

[31]  M. Leclerc,et al.  Synthesis and Photovoltaic Properties of Poly(dithieno[3,2-b:2′,3′-d]germole) Derivatives , 2011 .

[32]  J. Ohshita,et al.  Synthesis, characterization, and photovoltaic applications of dithienogermole-dithienylbenzothiadiazole and -dithienylthiazolothiazole copolymers , 2011 .

[33]  John R. Reynolds,et al.  Dithienogermole as a fused electron donor in bulk heterojunction solar cells. , 2011, Journal of the American Chemical Society.

[34]  J. Ohshita,et al.  Synthesis of Dithienogermole-Containing π-Conjugated Polymers and Applications to Photovoltaic Cells , 2011 .

[35]  Hiroyuki Miyauchi,et al.  A naphthodithiophene-diketopyrrolopyrrole donor molecule for efficient solution-processed solar cells. , 2011, Journal of the American Chemical Society.

[36]  Yanming Sun,et al.  Inverted Polymer Solar Cells Integrated with a Low‐Temperature‐Annealed Sol‐Gel‐Derived ZnO Film as an Electron Transport Layer , 2011, Advanced materials.

[37]  Thuc-Quyen Nguyen,et al.  Small Molecule Solution-Processed Bulk Heterojunction Solar Cells† , 2011 .

[38]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[39]  C. Brabec,et al.  Nanomorphology and Charge Generation in Bulk Heterojunctions Based on Low‐Bandgap Dithiophene Polymers with Different Bridging Atoms , 2010 .

[40]  Zhengguo Zhu,et al.  Influence of the Bridging Atom on the Performance of a Low‐Bandgap Bulk Heterojunction Solar Cell , 2010, Advanced materials.

[41]  Yang Yang,et al.  Silicon Atom Substitution Enhances Interchain Packing in a Thiophene‐Based Polymer System , 2010, Advanced materials.

[42]  Guillermo C Bazan,et al.  Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. , 2009, Nature chemistry.

[43]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[44]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.