Bouncing Oil Droplets, de Broglie’s Quantum Thermostat, and Convergence to Equilibrium

Recently, the properties of bouncing oil droplets, also known as “walkers,” have attracted much attention because they are thought to offer a gateway to a better understanding of quantum behavior. They indeed constitute a macroscopic realization of wave-particle duality, in the sense that their trajectories are guided by a self-generated surrounding wave. The aim of this paper is to try to describe walker phenomenology in terms of de Broglie–Bohm dynamics and of a stochastic version thereof. In particular, we first study how a stochastic modification of the de Broglie pilot-wave theory, à la Nelson, affects the process of relaxation to quantum equilibrium, and we prove an H-theorem for the relaxation to quantum equilibrium under Nelson-type dynamics. We then compare the onset of equilibrium in the stochastic and the de Broglie–Bohm approaches and we propose some simple experiments by which one can test the applicability of our theory to the context of bouncing oil droplets. Finally, we compare our theory to actual observations of walker behavior in a 2D harmonic potential well.

[1]  Thomas Durt,et al.  de Broglie’s double solution: limitations of the self-gravity approach , 2018 .

[2]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[3]  Luis de la Peña,et al.  The Emerging Quantum , 2015 .

[4]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[5]  Guido Bacciagaluppi,et al.  A CONCEPTUAL INTRODUCTION TO NELSON’S MECHANICS , 2005 .

[6]  J. M. Bush Pilot-Wave Hydrodynamics , 2015 .

[7]  Matthieu Labousse Etude d'une dynamique à mémoire de chemin : une expérimentation théorique , 2014 .

[8]  Vladimir Igorevich Arnolʹd,et al.  Problèmes ergodiques de la mécanique classique , 1967 .

[9]  Martin Ja¨hnert,et al.  Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference , 2010 .

[10]  Guido Bacciagaluppi,et al.  Nelsonian mechanics revisited , 1998 .

[11]  A. Kyprianidis The principles of a stochastic formulation of quantum theory , 1992 .

[12]  David Hestenes,et al.  The zitterbewegung interpretation of quantum mechanics , 1990 .

[13]  Hans Westman,et al.  Dynamical origin of quantum probabilities , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Louis de Broglie,et al.  La mécanique ondulatoire et la structure atomique de la matière et du rayonnement , 1927 .

[15]  Salvador Miret-Artés,et al.  Bohmian Mechanics, Open Quantum Systems and Continuous Measurements , 2017 .

[16]  J. P. Vigier,et al.  Model of the Causal Interpretation of Quantum Theory in Terms of a Fluid with Irregular Fluctuations , 1954 .

[17]  John Bechhoefer,et al.  An experimental study of the onset of parametrically pumped surface waves in viscous fluids , 1995, Journal of Fluid Mechanics.

[18]  Yves Couder,et al.  Probabilities and trajectories in a classical wave-particle duality , 2012 .

[19]  Edward Nelson,et al.  Review of stochastic mechanics , 2012 .

[20]  Loïc Tadrist,et al.  Faraday instability and subthreshold Faraday waves: surface waves emitted by walkers , 2018, Journal of Fluid Mechanics.

[21]  Tristan Gilet,et al.  Quantumlike statistics of deterministic wave-particle interactions in a circular cavity. , 2016, Physical review. E.

[22]  Arezki Boudaoud,et al.  Walking droplets, a form of wave-particle duality at macroscopic scale? , 2010 .

[23]  Gerhard Grössing,et al.  Sub-Quantum Thermodynamics as a Basis of Emergent Quantum Mechanics , 2010, Entropy.

[24]  Samuel Colin,et al.  The zig-zag road to reality , 2011, 1107.4909.

[25]  Robert M. Gray,et al.  Probability, Random Processes, And Ergodic Properties , 1987 .

[26]  L. Broglie,et al.  Interpretation of quantum mechanics by the double solution theory , 2001 .

[27]  C. Efthymiopoulos,et al.  Origin of chaos near critical points of quantum flow. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  John W. M. Bush,et al.  Statistical projection effects in a hydrodynamic pilot-wave system , 2017 .

[29]  R. Mahnke,et al.  How to solve Fokker-Planck equation treating mixed eigenvalue spectrum? , 2013, 1303.5211.

[30]  John W. M. Bush,et al.  Walking droplets interacting with single and double slits , 2017, Journal of Fluid Mechanics.

[31]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[32]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[33]  J. B. Keller Quantum mechanical states as attractors for Nelson processes , .

[34]  Christos Efthymiopoulos,et al.  Chaos in de Broglie - Bohm quantum mechanics and the dynamics of quantum relaxation , 2017, 1703.09810.

[35]  Jean Bricmont,et al.  Bayes, Boltzmann and Bohm: Probabilities in Physics , 2001 .

[36]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[37]  Maxime Hubert,et al.  Scattering theory of walking droplets in the presence of obstacles , 2016, 1605.02370.

[38]  Maaneli Derakhshani,et al.  A Suggested Answer To Wallstrom's Criticism (I): Zitterbewegung Stochastic Mechanics , 2015 .

[39]  A. Valentini On the pilot-wave theory of classical, quantum and subquantum physics , 1992 .

[40]  Nicola Cufaro Petroni Asymptotic Behaviour of Densities for Nelson Processes , 1995 .

[41]  Antony Valentini,et al.  Quantum field theory of relic nonequilibrium systems , 2014, 1409.6817.

[42]  D. Harris,et al.  Wavelike statistics from pilot-wave dynamics in a circular corral. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Samuel Colin,et al.  Bouncing oil droplets, de Broglie's quantum thermostat and convergence to equilibrium , 2018 .

[44]  John W. M. Bush,et al.  The new wave of pilot-wave theory , 2015 .

[45]  T. Wallstrom,et al.  Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[46]  Thomas Durt Do Dice Remember? , 1999 .

[47]  Basil J. Hiley,et al.  Non-locality and locality in the stochastic interpretation of quantum mechanics , 1989 .

[48]  Yves Couder,et al.  Information stored in Faraday waves: the origin of a path memory , 2011, Journal of Fluid Mechanics.

[49]  A. Valentini Signal-locality, uncertainty, and the subquantum H-theorem. II , 1991 .

[50]  J. Moukhtar,et al.  Path-memory induced quantization of classical orbits , 2010, Proceedings of the National Academy of Sciences.

[51]  Salvatore De Martino,et al.  Exact solutions of Fokker-Planck equations associated to quantum wave functions , 1998 .

[52]  Samuel Colin,et al.  Relaxation to quantum equilibrium for Dirac fermions in the de Broglie–Bohm pilot-wave theory , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[53]  Thomas Durt Characterisation of an entanglement-free evolution , 2001 .

[54]  M. D. Kostin On the Schrödinger‐Langevin Equation , 1972 .

[55]  Antony Valentini,et al.  Signal-locality, uncertainty, and the subquantum H-theorem. I , 1990 .

[56]  Antony Valentini,et al.  Time scales for dynamical relaxation to the Born rule , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[57]  Marc Miskin,et al.  Self-organization into quantized eigenstates of a classical wave-driven particle , 2014, Nature Communications.

[58]  G. C. Ghirardi,et al.  Bohmian Mechanics Revisited , 1997 .

[59]  Samuel Colin,et al.  Quantum non-equilibrium and relaxation to equilibrium for a class of de Broglie–Bohm-type theories , 2009, 0911.2823.

[60]  Daniel C. Cole,et al.  The quantum dice: An introduction to stochastic electrodynamics , 1996 .

[61]  Greg Parker,et al.  The EPR paradox , 1995 .

[62]  A B Nassar Fluid formulation of a generalised Schrodinger-Langevin equation , 1985 .

[63]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[64]  E. Fort,et al.  Dynamical phenomena: Walking and orbiting droplets , 2005, Nature.

[65]  Antony Valentini,et al.  Inflationary Cosmology as a Probe of Primordial Quantum Mechanics , 2008, 0805.0163.

[66]  L.S.F. Olavo,et al.  Foundations of quantum mechanics: The Langevin equations for QM , 2012 .

[67]  F. Guerra,et al.  Introduction to Nelson Stochastic Mechanics as a Model for Quantum Mechanics , 1995 .

[68]  Samuel Colin,et al.  de Broglie's double solution program: 90 years later , 2017, 1703.06158.

[69]  J W M Bush,et al.  Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits. , 2016, Physical review. E.

[70]  Antony Valentini,et al.  Long-time relaxation in pilot-wave theory , 2013, 1310.1899.

[71]  Yves Couder,et al.  Single-particle diffraction and interference at a macroscopic scale. , 2006, Physical review letters.

[72]  C. Efthymiopoulos,et al.  Order in de Broglie–Bohm quantum mechanics , 2012, 1203.5598.