JCMT BISTRO Survey: Magnetic Fields within the Hub-filament Structure in IC 5146

We present the 850 μm polarization observations toward the IC 5146 filamentary cloud taken using the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) and its associated polarimeter (POL-2), mounted on the James Clerk Maxwell Telescope, as part of the B-fields In STar forming Regions Observations. This work is aimed at revealing the magnetic field morphology within a core-scale (≲1.0 pc) hub-filament structure (HFS) located at the end of a parsec-scale filament. To investigate whether the observed polarization traces the magnetic field in the HFS, we analyze the dependence between the observed polarization fraction and total intensity using a Bayesian approach with the polarization fraction described by the Rice likelihood function, which can correctly describe the probability density function of the observed polarization fraction for low signal-to-noise ratio data. We find a power-law dependence between the polarization fraction and total intensity with an index of 0.56 in AV ∼ 20–300 mag regions, suggesting that the dust grains in these dense regions can still be aligned with magnetic fields in the IC 5146 regions. Our polarization maps reveal a curved magnetic field, possibly dragged by the contraction along the parsec-scale filament. We further obtain a magnetic field strength of 0.5 ± 0.2 mG toward the central hub using the Davis–Chandrasekhar–Fermi method, corresponding to a mass-to-flux criticality of ∼1.3 ± 0.4 and an Alfvénic Mach number of <0.6. These results suggest that gravity and magnetic field are currently of comparable importance in the HFS and that turbulence is less important.

E. Pascale | A. Scaife | P. Koch | A. Whitworth | N. Peretto | G. Fuller | H. Chen | T. Onaka | M. Tamura | Sang-Sung Lee | D. Byun | D. Johnstone | P. Bastien | Jongsoo Kim | G. Savini | J. Francesco | B. Matthews | Di Li | P. Friberg | M. Seta | J. Kwon | T. Nagata | Tsuyoshi Inoue | W. Chen | K. Kawabata | S. Eyres | S. Falle | M. Griffin | W. Holland | J. Greaves | G. Moriarty-Schieven | T. Hasegawa | D. Ward-Thompson | J. Hatchell | A. Chrysostomou | J. Fiege | R. Friesen | S. Graves | M. Houde | J. Kirk | J. Richer | P. Andr'e | K. Lacaille | C. Dowell | A. Kataoka | R. Rao | M. Rawlings | H. Parsons | Jia‐Wei Wang | L. Qian | K. Qiu | T. Ching | Jinghua Yuan | A. Rigby | Jianjun Zhou | Da-lei Li | G. Park | Miju Kang | Il-Gyo Jeong | H. Nakanishi | Jeong-Eun Lee | Kee-Tae Kim | Hongchi Wang | Tie Liu | Ji-hyun Kang | S. Inutsuka | F. Kemper | Minho Choi | Sung-ju Kang | Jungyeon Cho | H. Yoo | D. Berry | T. Pyo | F. Nakamura | S. Loo | V. Konyves | D. Arzoumanian | Guoyin Zhang | Junhao Liu | Y. Doi | J. Robitaille | Chuan-Peng Zhang | Hua-b. Li | Sheng-Yuan Liu | S. Lai | A. Soam | C. Lee | Ya-Wen Tang | Gwanjeong Kim | S. Mairs | Shinyoung Kim | K. Pattle | W. Kwon | E. Chung | A. Pon | H. Duan | S. Hayashi | M. Matsumura | Yapeng Zhang | S. Sadavoy | K. Tomisaka | Y. Tsukamoto | Hsi-Wei Yen | N. Ohashi | K. Iwasaki | Yusuke Aso | Chin-Fei Lee | H. Shinnaga | L. Fanciullo | M. C. Chen | E. Drabek-Maunder | T. Gledhill | Mi-Ryang Kim | R. Furuya | S. Coud'e | C. Eswaraiah | K. Kim | A. Lyo | B. Retter | I. Han | Hyeseung Lee | Thiem C. Hoang | Hyeong-Sik Yun | T. Zenko | Masato I. N. Kobayashi | E. Franzmann | Hong-Li Liu | Q. Gu | Yoshihiro Kanamori | H. Saito | J. Hwang | Yong-Hee Lee | Zhu | T. Inoue | S. Lai | Hongli Liu | Chuan-peng Zhang | W. Chen | H. Yun | Ya-wen Tang | Geumsook Park

[1]  K. Menten,et al.  Probing the initial conditions of high-mass star formation , 2007, Astronomy & Astrophysics.

[2]  L. Loinard,et al.  Distances and Kinematics of Gould Belt Star-forming Regions with Gaia DR2 Results , 2018, The Astrophysical Journal.

[3]  Per Friberg,et al.  Characterizing and reducing the POL-2 instrumental polarization , 2018, Astronomical Telescopes + Instrumentation.

[4]  Tetsuo Hasegawa,et al.  First Observations of the Magnetic Field inside the Pillars of Creation: Results from the BISTRO Survey , 2018, The Astrophysical Journal.

[5]  Lei Zhu,et al.  Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements , 2018, The Astrophysical Journal.

[6]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[7]  Lei Zhu,et al.  A First Look at BISTRO Observations of the ρ Oph-A core , 2018, 1804.09313.

[8]  L. V. Tóth,et al.  A Holistic Perspective on the Dynamics of G035.39-00.33: The Interplay between Gas and Magnetic Fields , 2018, The Astrophysical Journal.

[9]  P. Koch,et al.  Polarization Properties and Magnetic Field Structures in the High-mass Star-forming Region W51 Observed with ALMA , 2018, 1801.08264.

[10]  E. Vázquez-Semadeni,et al.  The magnetic field structure in molecular cloud filaments , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  P. Koch,et al.  MAGNETIC FIELDS AND MASSIVE STAR FORMATION , 2014, Proceedings of the International Astronomical Union.

[12]  A. Zavagno,et al.  High-mass Star Formation through Filamentary Collapse and Clump-fed Accretion in G22 , 2017, 1711.08951.

[13]  Multiwavelength stellar polarimetry of the filamentary cloud IC5146. I. Dust properties , 2017, 1710.03899.

[14]  P. Koch,et al.  The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament , 2017, 1707.05269.

[15]  A. Goodman,et al.  Unveiling the Role of the Magnetic Field at the Smallest Scales of Star Formation , 2017, 1706.03806.

[16]  P. Koch,et al.  Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V , 2017, 1706.03534.

[17]  Saeko S. Hayashi,et al.  First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt , 2017, 1704.08552.

[18]  Qizhou Zhang,et al.  A Massive Prestellar Clump Hosting No High-mass Cores , 2017, 1704.08264.

[19]  A. Lazarian,et al.  Alignment of Irregular Grains by Mechanical Torques , 2017, 1704.02256.

[20]  Silvia De Francesco,et al.  The JCMT Gould Belt Survey: A First Look at IC 5146 , 2017, 1701.04898.

[21]  Qizhou Zhang,et al.  MAGNETICALLY DOMINATED PARALLEL INTERSTELLAR FILAMENTS IN THE INFRARED DARK CLOUD G14.225-0.506 , 2016, 1609.08052.

[22]  Giorgio Savini,et al.  POL-2: a polarimeter for the James-Clerk-Maxwell telescope , 2016, Astronomical Telescopes + Instrumentation.

[23]  R. Gehrz,et al.  SOFIA MID-INFRARED IMAGING AND CSO SUBMILLIMETER POLARIMETRY OBSERVATIONS OF G034.43+00.24 MM1 , 2016 .

[24]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[25]  A. Whitworth,et al.  Perturbation growth in accreting filaments , 2016, 1602.07651.

[26]  Qizhou Zhang,et al.  HELICAL MAGNETIC FIELDS IN THE NGC 1333 IRAS 4A PROTOSTELLAR OUTFLOWS , 2016, 1601.05229.

[27]  D. Johnstone,et al.  The JCMT Gould Belt Survey: the effect of molecular contamination in SCUBA-2 observations of Orion A , 2016, 1601.01989.

[28]  G. W. Pratt,et al.  Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds , 2015, 1502.04123.

[29]  J. Hough,et al.  WIDE-FIELD INFRARED POLARIMETRY OF THE ρ OPHIUCHI CLOUD CORE , 2015 .

[30]  J. Pineda,et al.  The JCMT Gould Belt Survey: a quantitative comparison between SCUBA-2 data reduction methods , 2015, 1509.06385.

[31]  John E. Vaillancourt,et al.  Interstellar Dust Grain Alignment , 2015 .

[32]  D. Johnstone,et al.  YOUNG STELLAR OBJECTS IN THE GOULD BELT , 2015, 1508.03199.

[33]  S. Inutsuka,et al.  The Formation and Destruction of Molecular Clouds and Galactic Star Formation , 2015, Proceedings of the International Astronomical Union.

[34]  Ludmilla Kolokolova,et al.  Polarimetry of Stars and Planetary Systems , 2015 .

[35]  H. Liu,et al.  ALMA resolves the spiraling accretion flow in the luminous OB cluster forming region G33.92+0.11 , 2015, 1505.04255.

[36]  P. K. Leung,et al.  Self-similar fragmentation regulated by magnetic fields in a region forming massive stars , 2015, Nature.

[37]  S. Walch,et al.  The impact of turbulence and magnetic field orientation on star-forming filaments , 2015, 1503.01659.

[38]  S. Plaszczynski,et al.  Polarization measurement analysis - I. Impact of the full covariance matrix on polarization fraction and angle measurements , 2014, 1406.6536.

[39]  P. Koch,et al.  THE IMPORTANCE OF THE MAGNETIC FIELD FROM AN SMA–CSO-COMBINED SAMPLE OF STAR-FORMING REGIONS , 2014, 1411.3830.

[40]  L. Montier,et al.  Polarization measurements analysis II. Best estimators of polarization fraction and angle , 2014, 1407.0178.

[41]  Qizhou Zhang,et al.  CORE AND FILAMENT FORMATION IN MAGNETIZED, SELF-GRAVITATING ISOTHERMAL LAYERS , 2014, 1405.1013.

[42]  T. Henning,et al.  The link between magnetic fields and filamentary clouds: bimodal cloud orientations in the Gould Belt , 2013, 1310.6261.

[43]  J. Francesco,et al.  Abundant Cyanopolyynes as a Probe of Infall in the Serpens South Cluster-Forming Region , 2013, 1309.1763.

[44]  E. Vázquez-Semadeni,et al.  FILAMENTS IN SIMULATIONS OF MOLECULAR CLOUD FORMATION , 2013, 1308.6298.

[45]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[46]  G. Wilson,et al.  FILAMENTARY ACCRETION FLOWS IN THE EMBEDDED SERPENS SOUTH PROTOCLUSTER , 2013, 1301.6792.

[47]  Per Friberg,et al.  Scuba-2: On-sky calibration using submillimetre standard sources , 2013, 1301.3773.

[48]  Douglas Scott,et al.  Scuba-2: Iterative map-making with the sub-millimetre user reduction facility , 2013, 1301.3652.

[49]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[50]  Astrophysics,et al.  UNVEILING A NETWORK OF PARALLEL FILAMENTS IN THE INFRARED DARK CLOUD G14.225−0.506 , 2012, The Astrophysical Journal.

[51]  D. Johnstone,et al.  ASPECT RATIO DEPENDENCE OF THE FREE-FALL TIME FOR NON-SPHERICAL SYMMETRIES , 2012, 1207.3078.

[52]  Fragmentation and OB Star Formation in High-Mass Molecular Hub-Filament Systems , 2012, 1206.1907.

[53]  D. Johnstone,et al.  Molecular line contamination in the SCUBA-2 450 and 850 μm continuum data , 2012, 1204.6180.

[54]  O. Miettinen A molecular line study of the filamentary infrared dark cloud G304.74+01.32 , 2012, 1202.3051.

[55]  Jason L. Quinn,et al.  Bayesian analysis of polarization measurements , 2012, 1202.0299.

[56]  P. Bastien,et al.  GRAIN ALIGNMENT IN STARLESS CORES , 2014, 1411.1031.

[57]  Adam Ginsburg,et al.  PySpecKit: Python Spectroscopic Toolkit , 2011 .

[58]  D. Johnstone,et al.  MODES OF STAR FORMATION IN FINITE MOLECULAR CLOUDS , 2011, 1108.1395.

[59]  M. Tamura,et al.  NEAR-INFRARED-IMAGING POLARIMETRY TOWARD SERPENS SOUTH: REVEALING THE IMPORTANCE OF THE MAGNETIC FIELD , 2011, 1104.2977.

[60]  N. Peretto,et al.  Astronomy Astrophysics Letter to the Editor Characterizing interstellar filaments with Herschel in IC 5146 ⋆,⋆⋆ , 2022 .

[61]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[62]  Peng Wang,et al.  LOWERING THE CHARACTERISTIC MASS OF CLUSTER STARS BY MAGNETIC FIELDS AND OUTFLOW FEEDBACK , 2010, 1008.0409.

[63]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[64]  D. Marrone,et al.  IRAS 16293: A “MAGNETIC” TALE OF TWO CORES , 2009, 0910.5269.

[65]  T. Jenness,et al.  HARP/ACSIS: a submillimetre spectral imaging system on the James Clerk Maxwell Telescope , 2009, 0907.3610.

[66]  P. Myers FILAMENTARY STRUCTURE OF STAR-FORMING COMPLEXES , 2009, 0906.2005.

[67]  P. Koch,et al.  EVOLUTION OF MAGNETIC FIELDS IN HIGH-MASS STAR FORMATION: LINKING FIELD GEOMETRY AND COLLAPSE FOR THE W51 e2/e8 CORES , 2009, 0905.1996.

[68]  A. Lazarian,et al.  RADIATIVE TORQUES ALIGNMENT IN THE PRESENCE OF PINWHEEL TORQUES , 2008, 0801.0266.

[69]  J. Dotson,et al.  DISPERSION OF MAGNETIC FIELDS IN MOLECULAR CLOUDS. I , 2009 .

[70]  Jessie L. Dotson,et al.  DISPERSION OF MAGNETIC FIELDS IN MOLECULAR CLOUDS. II. , 2008, 0909.5227.

[71]  L. Allen,et al.  The Spitzer Survey of Interstellar Clouds in the Gould Belt. I. IC 5146 Observed With IRAC and MIPS , 2008 .

[72]  Zhi-Yun Li,et al.  Magnetically Regulated Star Formation in Three Dimensions: The Case of the Taurus Molecular Cloud Complex , 2008, 0804.4201.

[73]  Daniel J. Price,et al.  The effect of magnetic fields on star cluster formation , 2008, 0801.3293.

[74]  J. Hough,et al.  The Efficiency of Grain Alignment in Dense Interstellar Clouds: a Reassessment of Constraints from Near-Infrared Polarization , 2007, 0711.2536.

[75]  A. Lazarian,et al.  Subsonic Mechanical Alignment of Irregular Grains , 2007, 0707.3805.

[76]  A. Lazarian,et al.  Radiative torques: analytical model and basic properties , 2007, 0707.0886.

[77]  Ramprasad Rao,et al.  Magnetic Fields in the Formation of Sun-Like Stars , 2006, Science.

[78]  John E. Vaillancourt,et al.  Placing Confidence Limits on Polarization Measurements , 2006, astro-ph/0603110.

[79]  C. Aspin,et al.  Astronomical Polarimetry: Current Status and Future Directions , 2005 .

[80]  W. D. Watson,et al.  Line Polarization of Molecular Lines at Radio Frequencies: The Case of DR 21(OH) , 2005, astro-ph/0504258.

[81]  K. Rice,et al.  Protostars and Planets V , 2005 .

[82]  M. Juvela,et al.  Theoretical Models of Polarized Dust Emission from Protostellar Cores , 2001, astro-ph/0104231.

[83]  M. Norman,et al.  Magnetic Field Diagnostics Based on Far-Infrared Polarimetry: Tests Using Numerical Simulations , 2001, astro-ph/0103286.

[84]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[85]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[86]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[87]  J. Alves,et al.  Infrared Extinction and the Structure of the IC 5146 Dark Cloud , 1999 .

[88]  S. Miyama,et al.  An Origin of Filamentary Structure in Molecular Clouds , 1998 .

[89]  Philip C. Myers,et al.  On the Efficiency of Grain Alignment in Dark Clouds , 1997, astro-ph/9706163.

[90]  R. Crutcher Magnetic fields in molecular clouds , 2007 .

[91]  F. Bertoldi,et al.  Pressure-confined clumps in magnetized molecular clouds , 1992 .

[92]  T. Jones Infrared polarimetry and the interstellar magnetic field , 1989 .

[93]  M. Tamura,et al.  Infrared polarimetry of dark clouds – I. Magnetic field structure in Heiles Cloud 2 , 1987 .

[94]  T. Mouschovias,et al.  The effect of ambipolar diffusion on magnetic braking of molecular cloud cores: an exact, time-dependent solution , 1986 .

[95]  W. D. Watson,et al.  Linear polarization of molecular lines at radio frequencies , 1984 .

[96]  N. Kylafis,et al.  Linear polarization of radio frequency lines in molecular clouds and circumstellar envelopes , 1982 .

[97]  N. Kylafis,et al.  On mapping the magnetic field direction in molecular clouds by polarization measurements , 1981 .

[98]  J. Wardle,et al.  The linear polarization of quasi-stellar radio sources at 3.71 and 11.1 centimeters. , 1974 .

[99]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .

[100]  S. Rice Mathematical analysis of random noise , 1944 .