Sensory activity differentially modulates N-methyl-d-aspartate receptor subunits 2A and 2B in cortical layers

[1]  Benjamin D. Philpot,et al.  Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity , 2008, Neuropharmacology.

[2]  M. Bear,et al.  Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  Leonard E. White,et al.  Vision and Cortical Map Development , 2007, Neuron.

[4]  Yun Wang,et al.  Developmental Switch in the Contribution of Presynaptic and Postsynaptic NMDA Receptors to Long-Term Depression , 2007, The Journal of Neuroscience.

[5]  Roger A. Nicoll,et al.  Rapid Bidirectional Switching of Synaptic NMDA Receptors , 2007, Neuron.

[6]  Mario Treviño,et al.  Sequential Development of Long-Term Potentiation and Depression in Different Layers of the Mouse Visual Cortex , 2007, The Journal of Neuroscience.

[7]  R. Reid,et al.  Homeostatic Regulation of Eye-Specific Responses in Visual Cortex during Ocular Dominance Plasticity , 2007, Neuron.

[8]  Mark F. Bear,et al.  Obligatory Role of NR2A for Metaplasticity in Visual Cortex , 2007, Neuron.

[9]  B. Gordon,et al.  Virally mediated knock-down of NR2 subunits ipsilateral to the deprived eye blocks ocular dominance plasticity , 2007, Experimental Brain Research.

[10]  M. Bear,et al.  Activity-dependent regulation of NR2B translation contributes to metaplasticity in mouse visual cortex , 2007, Neuropharmacology.

[11]  Mark F. Bear,et al.  Deprivation-induced synaptic depression by distinct mechanisms in different layers of mouse visual cortex , 2007, Proceedings of the National Academy of Sciences.

[12]  S. Nelson,et al.  Potentiation of cortical inhibition by visual deprivation , 2006, Nature.

[13]  M. Bear,et al.  Bidirectional Modifications of Visual Acuity Induced by Monocular Deprivation in Juvenile and Adult Rats , 2006, The Journal of Neuroscience.

[14]  D. Fitzpatrick,et al.  The development of direction selectivity in ferret visual cortex requires early visual experience , 2006, Nature Neuroscience.

[15]  Mark F Bear,et al.  Stimulus for rapid ocular dominance plasticity in visual cortex. , 2006, Journal of neurophysiology.

[16]  E. Quinlan,et al.  Visual Deprivation Reactivates Rapid Ocular Dominance Plasticity in Adult Visual Cortex , 2006, The Journal of Neuroscience.

[17]  Theodore C. Dumas,et al.  Developmental regulation of cognitive abilities: Modified composition of a molecular switch turns on associative learning , 2005, Progress in Neurobiology.

[18]  A. Erisir,et al.  Quantitative morphology and postsynaptic targets of thalamocortical axons in critical period and adult ferret visual cortex , 2005, The Journal of comparative neurology.

[19]  A. Erisir,et al.  VGluT2 immunochemistry identifies thalamocortical terminals in layer 4 of adult and developing visual cortex , 2005, The Journal of comparative neurology.

[20]  Mark F. Bear,et al.  How Monocular Deprivation Shifts Ocular Dominance in Visual Cortex of Young Mice , 2004, Neuron.

[21]  N. Daw,et al.  LTP and LTD vary with layer in rodent visual cortex , 2004, Vision Research.

[22]  E. G. Jones,et al.  Switching of NMDA Receptor 2A and 2B Subunits at Thalamic and Cortical Synapses during Early Postnatal Development , 2004, The Journal of Neuroscience.

[23]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[24]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[25]  M. Constantine‐Paton,et al.  Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal , 2004, Trends in Neurosciences.

[26]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[27]  N. Daw,et al.  Layer variations of long-term depression in rat visual cortex. , 2004, Journal of neurophysiology.

[28]  M. Bear,et al.  Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation , 2003, Nature Neuroscience.

[29]  Y. Yoshimura,et al.  Two Forms of Synaptic Plasticity with Distinct Dependence on Age, Experience, and NMDA Receptor Subtype in Rat Visual Cortex , 2003, The Journal of Neuroscience.

[30]  Mark F Bear,et al.  Evidence for Altered NMDA Receptor Function as a Basis for Metaplasticity in Visual Cortex , 2003, The Journal of Neuroscience.

[31]  Niraj S. Desai,et al.  Homeostatic plasticity in the CNS: synaptic and intrinsic forms , 2003, Journal of Physiology-Paris.

[32]  M. Bear,et al.  NMDA Receptor-Dependent Ocular Dominance Plasticity in Adult Visual Cortex , 2003, Neuron.

[33]  A. Erisir,et al.  Decline of the Critical Period of Visual Plasticity Is Concurrent with the Reduction of NR2B Subunit of the Synaptic NMDA Receptor in Layer 4 , 2003, The Journal of Neuroscience.

[34]  Mark F Bear,et al.  Bidirectional synaptic plasticity: from theory to reality. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[35]  Hisashi Mori,et al.  Separable features of visual cortical plasticity revealed by N-methyl-d-aspartate receptor 2A signaling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Takafumi Inoue,et al.  Imaging of calcineurin activated by long‐term depression‐inducing synaptic inputs in living neurons of rat visual cortex , 2003, The European journal of neuroscience.

[37]  D. Fitzpatrick,et al.  The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex , 2001, Nature.

[38]  Ary S. Ramoa,et al.  Suppression of Cortical NMDA Receptor Function Prevents Development of Orientation Selectivity in the Primary Visual Cortex , 2001, The Journal of Neuroscience.

[39]  M Sur,et al.  Specific Roles of NMDA and AMPA Receptors in Direction-Selective and Spatial Phase-Selective Responses in Visual Cortex , 2001, The Journal of Neuroscience.

[40]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[41]  J. Trachtenberg,et al.  Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex. , 2000, Science.

[42]  M. Bear,et al.  Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[43]  C. Rittenhouse,et al.  Molecular basis for induction of ocular dominance plasticity. , 1999, Journal of neurobiology.

[44]  J DeFelipe,et al.  Estimation of the number of synapses in the cerebral cortex: methodological considerations. , 1999, Cerebral cortex.

[45]  Naoum P. Issa,et al.  The Critical Period for Ocular Dominance Plasticity in the Ferret’s Visual Cortex , 1999, The Journal of Neuroscience.

[46]  Mark F. Bear,et al.  Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo , 1999, Nature Neuroscience.

[47]  C. Rittenhouse,et al.  Monocular deprivation induces homosynaptic long-term depression in visual cortex , 1999, Nature.

[48]  M. Stryker,et al.  Local GABA circuit control of experience-dependent plasticity in developing visual cortex. , 1998, Science.

[49]  E. B. Roberts,et al.  Suppression of NMDA receptor function using antisense DNA block ocular dominance plasticity while preserving visual responses. , 1998, Journal of neurophysiology.

[50]  W. Baschong,et al.  Preparation, use, and enlargement of ultrasmall gold particles in immunoelectron microscopy , 1998, Microscopy research and technique.

[51]  M. Stryker,et al.  Development of Orientation Preference Maps in Ferret Primary Visual Cortex , 1996, The Journal of Neuroscience.

[52]  M. Bear,et al.  Metaplasticity: the plasticity of synaptic plasticity , 1996, Trends in Neurosciences.

[53]  L C Katz,et al.  Development of horizontal projections in layer 2/3 of ferret visual cortex. , 1996, Cerebral cortex.

[54]  N W Daw,et al.  Mechanisms of plasticity in the visual cortex. The Friedenwald Lecture. , 1994, Investigative ophthalmology & visual science.

[55]  A. J. Scheetz,et al.  Modulation of NMDA receptor function: implications for vertebrate neural development , 1994, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[56]  L. Maffei,et al.  Functional postnatal development of the rat primary visual cortex and the role of visual experience: Dark rearing and monocular deprivation , 1994, Vision Research.

[57]  M. Stryker,et al.  Development of orientation selectivity in ferret visual cortex and effects of deprivation , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  P. Rakić,et al.  Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  A. Burkhalter,et al.  Development of local circuits in human visual cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  C. Shatz,et al.  Developmental mechanisms that generate precise patterns of neuronal connectivity , 1993, Cell.

[61]  G. Carmignoto,et al.  Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. , 1992, Science.

[62]  N. Daw,et al.  The effect of visual experience on development of NMDA receptor synaptic transmission in kitten visual cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  E. Callaway,et al.  Development of axonal arbors of layer 4 spiny neurons in cat striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  G. Mower,et al.  The effect of dark rearing on the time course of the critical period in cat visual cortex. , 1991, Brain research. Developmental brain research.

[65]  C. Aoki,et al.  Optimization of differential immunogold-silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding , 1990, Journal of Neuroscience Methods.

[66]  H. J. Luhmann,et al.  Horizontal Interactions in Cat Striate Cortex: I. Anatomical Substrate and Postnatal Development , 1990, The European journal of neuroscience.

[67]  E. Callaway,et al.  Emergence and refinement of clustered horizontal connections in cat striate cortex , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  W Singer,et al.  Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  N. Daw,et al.  The location and function of NMDA receptors in cat and kitten visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  W. Singer,et al.  Blockade of "NMDA" receptors disrupts experience-dependent plasticity of kitten striate cortex. , 1987, Science.

[71]  G. Mower,et al.  Role of visual experience in activating critical period in cat visual cortex. , 1985, Journal of Neurophysiology.

[72]  M. Colonnier,et al.  An empirical assessment of stereological formulae applied to the counting of synaptic disks in the cerebral cortex , 1985, The Journal of comparative neurology.

[73]  T. Wiesel,et al.  The Sharpey-Schafer lecture. Morphological basis of visual cortical function. , 1983, Quarterly journal of experimental physiology.

[74]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  D E Mitchell,et al.  Prolonged sensitivity to monocular deprivation in dark-reared cats. , 1980, Journal of neurophysiology.

[76]  D E Mitchell,et al.  Behavioral evidence for prolonged sensitivity to effects of monocular deprivation in dark-reared cats. , 1980, Journal of neurophysiology.

[77]  D. Hubel,et al.  Plasticity of ocular dominance columns in monkey striate cortex. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[78]  B. Cragg The development of synapses in kitten visual cortex during visual deprivation , 1975, Experimental Neurology.

[79]  D. Hubel,et al.  The period of susceptibility to the physiological effects of unilateral eye closure in kittens , 1970, The Journal of physiology.

[80]  P. Somogyi,et al.  Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area 17) of the cat , 2004, Experimental Brain Research.

[81]  T. Tsumoto,et al.  Actions of excitatory amino acid antagonists on geniculo-cortical transmission in the cat's visual cortex , 2004, Experimental Brain Research.

[82]  M. Bear,et al.  Visual Experience and Deprivation Bidirectionally Modify the Composition and Function of NMDA Receptors in Visual Cortex , 2001, Neuron.

[83]  C. Rampon,et al.  Genetic analysis of learning behavior‐induced structural plasticity , 2000, Hippocampus.

[84]  X. F. Wang,et al.  Factors that are critical for plasticity in the visual cortex. , 1995, Ciba Foundation symposium.

[85]  Nigel W. Daw,et al.  Mechanisms of Plasticity in the Visual Cortex , 1995 .

[86]  N. Daw,et al.  Critical period for monocular deprivation in the cat visual cortex. , 1992, Journal of neurophysiology.

[87]  C. Gilbert Microcircuitry of the visual cortex. , 1983, Annual review of neuroscience.

[88]  A. Brusco,et al.  A quantitative study of visual cortex synapses during the postnatal development of dark-reared rats. , 1983, Journal of neurobiology.