Metabolic Regulations in Hematopoietic Stem Cells.

[1]  Guoqiang Chen,et al.  PPM1K Regulates Hematopoiesis and Leukemogenesis through CDC20-Mediated Ubiquitination of MEIS1 and p21. , 2018, Cell reports.

[2]  H. Snoeck,et al.  Dye-Independent Methods Reveal Elevated Mitochondrial Mass in Hematopoietic Stem Cells. , 2017, Cell stem cell.

[3]  R. Deberardinis,et al.  Ascorbate regulates haematopoietic stem cell function and leukaemogenesis , 2017, Nature.

[4]  V. Beneš,et al.  Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy , 2017, Cell.

[5]  S. Weinberg,et al.  The mitochondrial respiratory chain is essential for haematopoietic stem cell function , 2017, Nature Cell Biology.

[6]  A. Wilkinson,et al.  Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation , 2016, Science.

[7]  P. Ratcliffe,et al.  Adult hematopoietic stem cells lacking Hif-1α self-renew normally. , 2016, Blood.

[8]  Lu Wen,et al.  Tracing haematopoietic stem cell formation at single-cell resolution , 2016, Nature.

[9]  A. Bergman,et al.  Fetal liver hematopoietic stem cell niches associate with portal vessels , 2016, Science.

[10]  Linheng Li,et al.  Regulation of hematopoietic stem cells in the niche , 2015, Science China Life Sciences.

[11]  J. Chipuk,et al.  Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3 , 2015, EMBO reports.

[12]  R. Deberardinis,et al.  Hypoxic metabolism in human hematopoietic stem cells , 2015, Cell & Bioscience.

[13]  Lianfeng Zhang,et al.  Inhibition of wild‐type p53‐induced phosphatase 1 promotes liver regeneration in mice by direct activation of mammalian target of rapamycin , 2015, Hepatology.

[14]  K. Rudolph,et al.  Wip1 deficiency impairs haematopoietic stem cell function via p53 and mTORC1 pathways , 2015, Nature Communications.

[15]  Hong Zheng,et al.  Maintenance of mouse hematopoietic stem cells ex vivo by reprogramming cellular metabolism. , 2015, Blood.

[16]  Xi C. He,et al.  Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells , 2014, Nature Medicine.

[17]  William J. Israelsen,et al.  Cell-State-Specific Metabolic Dependency in Hematopoiesis and Leukemogenesis , 2014, Cell.

[18]  S. Morrison,et al.  Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. , 2014, Cell stem cell.

[19]  Jeffrey A. Magee,et al.  Haematopoietic stem cells require a highly regulated protein synthesis rate , 2014, Nature.

[20]  Sergei A. Vinogradov,et al.  Direct measurement of local oxygen concentration in the bone marrow of live animals , 2014, Nature.

[21]  A. Bergman,et al.  Megakaryocytes regulate hematopoietic stem cell quiescence via Cxcl4 secretion , 2013, Nature Medicine.

[22]  M. Suematsu,et al.  Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. , 2013, Cell stem cell.

[23]  H. Broxmeyer,et al.  Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. , 2013, Cell stem cell.

[24]  Chengcheng Zhang,et al.  Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. , 2012, Blood.

[25]  R. Deberardinis,et al.  Profilin 1 is essential for retention and metabolism of mouse hematopoietic stem cells in bone marrow. , 2012, Blood.

[26]  P. Pandolfi,et al.  A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance , 2012, Nature Medicine.

[27]  Lei Ding,et al.  Endothelial and perivascular cells maintain haematopoietic stem cells , 2011, Nature.

[28]  J. Loscalzo,et al.  Genetically encoded fluorescent sensors for intracellular NADH detection. , 2011, Cell metabolism.

[29]  G. Semenza,et al.  Metabolic regulation of hematopoietic stem cells in the hypoxic niche. , 2011, Cell stem cell.

[30]  S. Karlsson,et al.  Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. , 2011, Cell stem cell.

[31]  P. Carmeliet,et al.  Hypoxic induction of vascular endothelial growth factor regulates murine hematopoietic stem cell function in the low-oxygenic niche. , 2011, Blood.

[32]  Min Wu,et al.  Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. , 2011, Biochimica et biophysica acta.

[33]  X. Dai,et al.  Critical role for Gimap5 in the survival of mouse hematopoietic stem and progenitor cells , 2011, The Journal of experimental medicine.

[34]  Ji-Hak Jeong,et al.  4-O-methylascochlorin, methylated derivative of ascochlorin, stabilizes HIF-1α via AMPK activation. , 2011, Biochemical and biophysical research communications.

[35]  Peter Storz,et al.  Forkhead homeobox type O transcription factors in the responses to oxidative stress. , 2011, Antioxidants & redox signaling.

[36]  P. Park,et al.  The Lkb1 metabolic sensor maintains haematopoietic stem cell survival , 2010, Nature.

[37]  L. Aravind,et al.  Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2 , 2010, Nature.

[38]  S. Morrison,et al.  mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. , 2010, Cell stem cell.

[39]  L. Chin,et al.  LKB1 regulates quiescence and metabolic homeostasis of hematopoietic stem cells , 2010, Nature.

[40]  M. Lavin,et al.  ATM Activation by Oxidative Stress , 2010, Science.

[41]  Cheng Cheng Zhang,et al.  The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. , 2010, Cell stem cell.

[42]  M. Suematsu,et al.  Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. , 2010, Cell stem cell.

[43]  Ben D. MacArthur,et al.  Mesenchymal and haematopoietic stem cells form a unique bone marrow niche , 2010, Nature.

[44]  M. Birnbaum,et al.  AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. , 2010, Blood.

[45]  H. Broxmeyer,et al.  Upregulation of nascent mitochondrial biogenesis in mouse hematopoietic stem cells parallels upregulation of CD34 and loss of pluripotency: A potential strategy for reducing oxidative risk in stem cells , 2010, Cell cycle.

[46]  Omar Abdel-Wahab,et al.  The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. , 2010, Cancer cell.

[47]  Pernilla Eliasson,et al.  The hematopoietic stem cell niche: Low in oxygen but a nice place to be , 2010, Journal of cellular physiology.

[48]  W. Zong,et al.  Akt and c-Myc Differentially Activate Cellular Metabolic Programs and Prime Cells to Bioenergetic Inhibition* , 2009, The Journal of Biological Chemistry.

[49]  S. Dunwoodie The role of hypoxia in development of the Mammalian embryo. , 2009, Developmental cell.

[50]  E. Laurenti,et al.  Myc's other life: stem cells and beyond. , 2009, Current opinion in cell biology.

[51]  Charles P. Lin,et al.  In vivo imaging of hematopoietic stem cells and their microenvironment , 2009, Journal of biophotonics.

[52]  Ken Chen,et al.  Recurring mutations found by sequencing an acute myeloid leukemia genome. , 2009, The New England journal of medicine.

[53]  R. Shaw,et al.  The LKB1–AMPK pathway: metabolism and growth control in tumour suppression , 2009, Nature Reviews Cancer.

[54]  G. Daley,et al.  Bone marrow adipocytes as negative regulators of the hematopoietic microenvironment , 2009, Nature.

[55]  T. Murohara,et al.  Inhibition of ischemia-induced angiogenesis by benzo[a]pyrene in a manner dependent on the aryl hydrocarbon receptor. , 2009, Biochemical and biophysical research communications.

[56]  A. Shakya,et al.  Oct1 loss of function induces a coordinate metabolic shift that opposes tumorigenicity , 2009, Nature Cell Biology.

[57]  I. Weissman,et al.  Heme oxygenase-1 deficiency leads to disrupted response to acute stress in stem cells and progenitors. , 2008, Blood.

[58]  Yang Liu,et al.  TSC–mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species , 2008, The Journal of experimental medicine.

[59]  L. Cantley,et al.  PI3K pathway alterations in cancer: variations on a theme , 2008, Oncogene.

[60]  H. Lodish,et al.  Cytokines regulating hematopoietic stem cell function , 2008, Current opinion in hematology.

[61]  A. Iwama,et al.  Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. , 2008, Genes & development.

[62]  T. Suda,et al.  Bone marrow long label-retaining cells reside in the sinusoidal hypoxic niche. , 2008, Biochemical and biophysical research communications.

[63]  Göran Karlsson,et al.  Signaling pathways governing stem-cell fate. , 2008, Blood.

[64]  S. Sharkis,et al.  A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. , 2007, Blood.

[65]  D. Gilliland,et al.  FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. , 2007, Cell stem cell.

[66]  M. Ripoli,et al.  The hypoxia‐inducible factor is stabilized in circulating hematopoietic stem cells under normoxic conditions , 2007, FEBS letters.

[67]  H. Nakauchi,et al.  Foxo3a is essential for maintenance of the hematopoietic stem cell pool. , 2007, Cell stem cell.

[68]  K. Parmar,et al.  Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia , 2007, Proceedings of the National Academy of Sciences.

[69]  S. Armstrong,et al.  FoxOs Are Critical Mediators of Hematopoietic Stem Cell Resistance to Physiologic Oxidative Stress , 2007, Cell.

[70]  A. C. Williams,et al.  Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia , 2007, Nature Cell Biology.

[71]  David Bryder,et al.  Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. , 2006, The American journal of pathology.

[72]  Y. S. Cho,et al.  Profiling of differentially expressed genes in human stem cells by cDNA microarray. , 2006, Molecules and cells.

[73]  Crispin J. Miller,et al.  Quantitative proteomics reveals posttranslational control as a regulatory factor in primary hematopoietic stem cells. , 2006, Blood.

[74]  S. Morrison,et al.  Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells , 2006, Nature.

[75]  E. Messing,et al.  VHL protein‐interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF‐1α , 2005, EMBO reports.

[76]  Tak W. Mak,et al.  Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells , 2004, Nature.

[77]  Keisuke Ito,et al.  Tie2/Angiopoietin-1 Signaling Regulates Hematopoietic Stem Cell Quiescence in the Bone Marrow Niche , 2004, Cell.

[78]  I. Weissman,et al.  A role for Wnt signalling in self-renewal of haematopoietic stem cells , 2003, Nature.

[79]  Irving L. Weissman,et al.  Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells , 2003, Nature.

[80]  W M Miller,et al.  Modeling pO(2) distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. , 2001, Biophysical journal.

[81]  E. Papoutsakis,et al.  Oxygen tension alters the effects of cytokines on the megakaryocyte, erythrocyte, and granulocyte lineages. , 1998, Experimental hematology.

[82]  M. Gassmann,et al.  Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. , 1998, Genes & development.

[83]  P. W. Hochachka,et al.  Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[84]  G. Spangrude,et al.  Resting and activated subsets of mouse multipotent hematopoietic stem cells. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[85]  P. Rameshwar,et al.  Oxygen saturation in the bone marrow of healthy volunteers. , 2002, Blood.

[86]  E. Papoutsakis,et al.  Reduced oxygen tension increases hematopoiesis in long-term culture of human stem and progenitor cells from cord blood and bone marrow. , 1992, Experimental hematology.

[87]  H. Mizoguchi,et al.  Improvement of culture conditions for human megakaryocytic and pluripotent progenitor cells by low oxygen tension. , 1987, International journal of cell cloning.

[88]  R. Schofield The relationship between the spleen colony-forming cell and the haemopoietic stem cell. , 1978, Blood cells.