Free-space local nonseparability dynamics of parabolic vector modes

It is well known that entanglement is invariant to local unitary transformations, this implies the degree of entanglement or non-separability remains constant during free-space propagation, which is true for both quantum and classically-entangled modes. Here we demonstrate an exception to this rule using a carefully engineered vectorial light field, and study its non-separability dynamics upon free-space propagation. We show that the local non-separability between the spatial and polarisation degrees of freedom dramatically decays to zero, while preserving the purity of the state and hence the global non-separability. We show this by numerical simulations and corroborate it experimentally. Our results evince novel properties of classically-entangled modes, point to the need for new measures of non-separability for such vectorial fields, while paving the way to novel applications for customised structured light.

[1]  R. Saija,et al.  Trapping volume control in optical tweezers using cylindrical vector beams. , 2013, Optics letters.

[2]  A. Forbes,et al.  Real-time Stokes polarimetry using a digital micromirror device. , 2019, Optics express.

[3]  Vladlen G. Shvedov,et al.  A long-range polarization-controlled optical tractor beam , 2014, Nature Photonics.

[4]  Bienvenu Ndagano,et al.  Classically Entangled Light , 2019, Progress in Optics.

[5]  A. Forbes,et al.  A review of complex vector light fields and their applications , 2018, Journal of Optics.

[6]  Isaac Nape,et al.  Creation and Detection of Vector Vortex Modes for Classical and Quantum Communication , 2017, Journal of Lightwave Technology.

[7]  Julio C Gutiérrez-Vega,et al.  Helmholtz-Gauss waves. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  A. Ruelas,et al.  Engineering parabolic beams with dynamic intensity profiles. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  A. Forbes,et al.  Simultaneous generation of multiple vector beams on a single SLM. , 2017, Optics express.

[10]  Joseph H. Eberly,et al.  Shimony–Wolf states and hidden coherences in classical light , 2015 .

[11]  G. Leuchs,et al.  Classical entanglement in polarization metrology , 2014, 1401.1543.

[12]  L. W. Chubb,et al.  Polarized Light , 2019, Light Science.

[13]  J. Goodman Introduction to Fourier optics , 1969 .

[14]  Chun-qing Gao,et al.  Bessel beams with spatial oscillating polarization , 2016, Scientific Reports.

[15]  A. Forbes,et al.  Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser , 2020 .

[16]  J. Eberly,et al.  Entanglement and classical polarization states. , 2010, Optics letters.

[17]  Jian Wang,et al.  High-base vector beam encoding/decoding for visible-light communications. , 2015, Optics letters.

[18]  Jianlin Zhao,et al.  Quasi-Bessel beams with longitudinally varying polarization state generated by employing spectrum engineering. , 2016, Optics letters.

[19]  Andrew Forbes,et al.  A vector holographic optical trap , 2018, Scientific Reports.

[20]  A. Forbes,et al.  Classical and quantum analysis of propagation invariant vector flat-top beams. , 2018, Applied optics.

[21]  X.-F. Qian,et al.  Entanglement limits duality and vice versa , 2018, Optica.

[22]  P. Munro,et al.  The use of Gauss-Laguerre vector beams in STED microscopy. , 2004, Optics express.

[23]  A. Ferrari,et al.  Optical trapping of nanotubes with cylindrical vector beams. , 2012, Optics letters.

[24]  Sabino Chávez-Cerda,et al.  Parabolic nondiffracting optical wave fields. , 2004, Optics letters.

[25]  A. Forbes,et al.  Characterizing quantum channels with non-separable states of classical light , 2017, Nature Physics.

[26]  S. Croke,et al.  Basis-independent tomography and nonseparability witnesses of pure complex vectorial light fields by Stokes projections , 2019, Physical Review A.

[27]  Rudolf Weber,et al.  Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. , 2010, Optics express.

[28]  Xu Liu,et al.  Effects of polarization on the de-excitation dark focal spot in STED microscopy , 2010 .

[29]  Jianlin Zhao,et al.  Generation and self-healing of vector Bessel-Gauss beams with variant state of polarizations upon propagation. , 2017, Optics express.

[30]  Andrew Forbes,et al.  Structured light with digital micromirror devices: a guide to best practice , 2019 .

[31]  A. Forbes,et al.  Measuring the nonseparability of vector vortex beams , 2015 .

[32]  Andrew Forbes,et al.  Quantum mechanics and classical light , 2019, Contemporary Physics.

[33]  A. Forbes,et al.  Determining the non-separability of vector modes with digital micromirror devices , 2020 .

[34]  Y. Kozawa,et al.  Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. , 2010, Optics express.

[35]  Miguel A. Alonso,et al.  Quantum and classical optics–emerging links , 2016 .

[36]  C. Denz,et al.  Entanglement beating in free space through spin–orbit coupling , 2018, Light: Science & Applications.

[37]  C. Rosales-Guzmán,et al.  In situ detection of a cooperative target's longitudinal and angular speed using structured light. , 2019, Optics letters.

[38]  Jianlin Zhao,et al.  Polarization oscillating beams constructed by copropagating optical frozen waves , 2018, Photonics Research.

[39]  Bo-Zhao,et al.  Classically entangled Ince–Gaussian modes , 2020, Applied Physics Letters.

[40]  A. Forbes,et al.  Free-space local nonseparability dynamics of vector modes , 2021 .

[41]  Jeffrey A. Davis,et al.  Nondiffracting Bessel beams with polarization state that varies with propagation distance. , 2015, Optics letters.

[42]  K. Toussaint,et al.  Optical trapping with π-phase cylindrical vector beams , 2010 .

[43]  M. Bandres,et al.  Accelerating parabolic beams. , 2008, Optics letters.

[44]  R. Spreeuw A Classical Analogy of Entanglement , 1998 .

[45]  A. Forbes,et al.  Beam quality measure for vector beams. , 2016, Optics letters.

[46]  Shunichi Sato,et al.  Resolution enhancement of confocal microscopy by subtraction method with vector beams. , 2014, Optics letters.

[47]  B. Saleh,et al.  Bell's measure in classical optical coherence , 2012, Nature Photonics.

[48]  M. Bandres,et al.  Observation of parabolic nondiffracting optical fields. , 2005, Optics express.

[49]  B. M. Rodríguez-Lara,et al.  Dynamical constants of structured photons with parabolic-cylindrical symmetry , 2009, 0903.0819.

[50]  Jeffrey A. Davis,et al.  Nondiffracting vector beams where the charge and the polarization state vary with propagation distance. , 2016, Optics letters.

[51]  A. Forbes,et al.  Polarisation-insensitive generation of complex vector modes from a digital micromirror device , 2020, Scientific Reports.

[52]  Franco Gori,et al.  Vector mode analysis of a young interferometer. , 2006, Optics letters.

[53]  Isaac Nape,et al.  Concepts in quantum state tomography and classical implementation with intense light: a tutorial , 2019, Advances in Optics and Photonics.

[54]  A. Willner,et al.  4 × 20  Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. , 2014, Optics letters.

[55]  A. N. Vamivakas,et al.  Emerging Connections: Classical and Quantum Optics , 2017, 1712.10040.

[56]  G. Leuchs,et al.  Classically entangled optical beams for high-speed kinematic sensing , 2015, 1504.00697.