Commercialization potential of microalgae for biofuels production

Microalgae feedstocks are gaining interest in the present day energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a critical appraisal of the commercialization potential of microalgae biofuels. The available literature on various aspects of microalgae, e.g. its cultivation, life cycle assessment, and conceptualization of an algal biorefinery, has been scanned and a critical analysis has been presented. A critical evaluation of the available information suggests that the economic viability of the process in terms of minimizing the operational and maintenance cost along with maximization of oil-rich microalgae production is the key factor, for successful commercialization of microalgae-based fuels.

[1]  E. Belarbi,et al.  A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. , 2000, Enzyme and microbial technology.

[2]  Emilio Molina,et al.  RETRACTED: A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil , 2000 .

[3]  A. Vergara-Fernández,et al.  Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. , 2008 .

[4]  Réjean Tremblay,et al.  Effect of ultrasonication and grinding on the determination of lipid class content of microalgae harvested on filters , 2003, Lipids.

[5]  Rashmi,et al.  Prospects of biodiesel production from microalgae in India , 2009 .

[6]  Nooruddin Thajuddin,et al.  Cyanobacterial biodiversity and potential applications in biotechnology , 2005 .

[7]  E. J. Martínez de la Ossa,et al.  Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana , 2005 .

[8]  E. Grima,et al.  Lipid extraction from the microalga Phaeodactylum tricornutum , 2007 .

[9]  M L He,et al.  Supplementation of algae to the diet of pigs: a new possibility to improve the iodine content in the meat. , 2002, Journal of animal physiology and animal nutrition.

[10]  Ayhan Demirbas,et al.  Production of Biodiesel from Algae Oils , 2008 .

[11]  F B Metting,et al.  Biodiversity and application of microalgae , 1996, Journal of Industrial Microbiology.

[12]  E. Becker Microalgae: Biotechnology and Microbiology , 1994 .

[13]  Shraga Shany,et al.  Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk , 2000, Journal of Applied Phycology.

[14]  H. R. Gislerød,et al.  Fatty acid composition of 12 microalgae for possible use in aquaculture feed , 2007, Aquaculture International.

[15]  M. Ghirardi,et al.  Microalgae: a green source of renewable H(2). , 2000, Trends in biotechnology.

[16]  M. D. Luque de Castro,et al.  Ultrasound: a powerful tool for leaching , 2003 .

[17]  Razif Harun,et al.  Microalgal biomass as a fermentation feedstock for bioethanol production , 2009 .

[18]  G. C. Zittelli,et al.  Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors , 1999 .

[19]  David P. Chynoweth,et al.  Effects of marine algal proximate composition on methane yields , 1990, Journal of Applied Phycology.

[20]  L. Rodolfi,et al.  Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor , 2009, Biotechnology and bioengineering.

[21]  G. Psacharopoulos Overview and methodology , 1991 .

[22]  H. B. Gotaas,et al.  Anaerobic digestion of Algae. , 1957, Applied microbiology.

[23]  M. Dring,et al.  The Biology of Marine Plants , 1991 .

[24]  C. Posten,et al.  Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production , 2008, BioEnergy Research.

[25]  Philippe Morand,et al.  Anaerobic digestion of Ulva sp. 1. Relationship between Ulva composition and methanisation , 1997, Journal of Applied Phycology.

[26]  U C Banerjee,et al.  Bioactive Compounds from Cyanobacteria and Microalgae: An Overview , 2005, Critical reviews in biotechnology.

[27]  A. Serrato,et al.  Extraction of oil from soybeans , 1981 .

[28]  W. R. Morrison,et al.  Solvent extraction of fatty acids from amylose inclusion complexes , 1989 .

[29]  Philippe Morand,et al.  Anaerobic digestion of Ulva sp. 2. Study of Ulva degradation and methanisation of liquefaction juices , 1999, Journal of Applied Phycology.

[30]  J. Holm‐Nielsen,et al.  The future of anaerobic digestion and biogas utilization. , 2009, Bioresource technology.

[31]  Changyan Yang,et al.  Fast pyrolysis of microalgae to produce renewable fuels , 2004 .

[32]  A. Belay,et al.  Spirulina (Arthrospira): potential application as an animal feed supplement , 1996, Journal of Applied Phycology.

[33]  M. Meireles,et al.  Supercritical Fluid Extraction of Fatty Acids and Carotenoids from the Microalgae Spirulina maxima , 2002 .

[34]  Feng Chen,et al.  Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. , 2004, Journal of agricultural and food chemistry.

[35]  Maarten Boersma,et al.  Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae) , 2000, Aquatic Ecology.

[36]  Francesca Venturi,et al.  Supercritical fluid extraction of oil from microalga Spirulina (arthrospira) platensis , 2006 .

[37]  L. C. Meher,et al.  Technical aspects of biodiesel production by transesterification—a review , 2006 .

[38]  P. Spolaore,et al.  Commercial applications of microalgae. , 2006, Journal of bioscience and bioengineering.

[39]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[40]  M. S. Azaza,et al.  Growth of Nile tilapia (Oreochromis niloticus L.) fed with diets containing graded levels of green algae ulva meal (Ulva rigida) reared in geothermal waters of southern Tunisia , 2008 .

[41]  Francesca Venturi,et al.  Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp. , 2005 .

[42]  Gholamhassan Najafi,et al.  Algae as a sustainable energy source for biofuel production in Iran: A case study , 2011 .

[43]  Janusz Pawliszyn,et al.  Kinetic model of supercritical fluid extraction , 1993 .

[44]  José Manuel Andrade,et al.  Heavy metals in edible seaweeds commercialised for human consumption , 2009 .

[45]  K. Bird,et al.  Seaweed Cultivation for Renewable Resources , 1987 .

[46]  J. Pratoomyot,et al.  Fatty acids composition of 10 microalgal species , 2005 .

[47]  T. J. Lundquist,et al.  Performance of methane fermentation pits in advanced integrated wastewater pond systems , 1994 .

[48]  Y. Chisti Biodiesel from microalgae beats bioethanol. , 2008, Trends in biotechnology.

[49]  G Charles Dismukes,et al.  Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. , 2008, Current opinion in biotechnology.

[50]  H. Atsushi,et al.  CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation , 1997 .

[51]  Jacinto F. Fabiosa,et al.  Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change , 2008, Science.

[52]  A. M. Humphrey,et al.  Chlorophyll as a Color and Functional Ingredient , 2006 .

[53]  Helena M. Amaro,et al.  Advances and perspectives in using microalgae to produce biodiesel , 2011 .

[54]  F. Xavier Malcata,et al.  Optimization of ω-3 fatty acid production by microalgae: crossover effects of CO2 and light intensity under batch and continuous cultivation modes , 2005, Marine Biotechnology.

[55]  Feng Chen,et al.  Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth , 1998 .

[56]  Mukesh Kumar Sharma,et al.  Spirulina fusiformis: A Food Supplement against Mercury Induced Hepatic Toxicity , 2005 .

[57]  Zhengyu Hu,et al.  Colony development and physiological characterization of the edible blue-green alga, Nostoc sphaeroides (Nostocaceae, Cyanophyta) , 2008 .

[58]  Shin Hirayama,et al.  Ethanol production from carbon dioxide by fermentative microalgae , 1998 .

[59]  A. Richmond,et al.  An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae) , 2001 .

[60]  Alejandro Cifuentes,et al.  Pressurized liquid extracts from Spirulina platensis microalga. Determination of their antioxidant activity and preliminary analysis by micellar electrokinetic chromatography. , 2004, Journal of chromatography. A.

[61]  D. Chynoweth Renewable Biomethane From Land and Ocean Energy Crops and Organic Wastes , 2005 .

[62]  B. Dale,et al.  Cumulative Energy and Global Warming Impact from the Production of Biomass for Biobased Products , 2003 .

[63]  Ye Sun,et al.  Hydrolysis of lignocellulosic materials for ethanol production: a review. , 2002, Bioresource technology.

[64]  Teresa M. Mata,et al.  Microalgae for biodiesel production and other applications: A review , 2010 .

[65]  Arnaud Hélias,et al.  Life-cycle assessment of biodiesel production from microalgae. , 2009, Environmental science & technology.

[66]  Razif Harun,et al.  Bioprocess engineering of microalgae to produce a variety of consumer products , 2010 .

[67]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[68]  X. N. Verlecar,et al.  Southern ocean seaweeds: a resource for exploration in food and drugs. , 2009 .

[69]  Jianlong Li,et al.  Variation of lipid and fatty acid compositions of the marine microalga Pavlova viridis (Prymnesiophyceae) under laboratory and outdoor culture conditions , 2008 .

[70]  J. V. Gerpen,et al.  Biodiesel processing and production , 2005 .

[71]  Albert Koulman,et al.  Realizing the promises of marine biotechnology. , 2003, Biomolecular engineering.

[72]  John R. Benemann,et al.  Biofuels from Microalgae: Review of Products, Processes and Potential, with Special Focus on Dunaliella sp. , 2009, The Alga Dunaliella.

[73]  . T.O.S.Popoola,et al.  Extraction, Properties and Utilization Potentials of Cassava Seed Oil , 2006 .

[74]  C. Field,et al.  Greater Transportation Energy and GHG Offsets from Bioelectricity Than Ethanol , 2009, Science.

[75]  Yajun Li,et al.  Microalgae: A promising feedstock for biodiesel , 2009 .

[76]  K. Hon-nami,et al.  A unique feature of hydrogen recovery in endogenous starch-to-alcohol fermentation of the marine microalga, Chlamydomonas perigranulata , 1996, Applied biochemistry and biotechnology.

[77]  Min Xiang,et al.  Quantum-inspired evolutionary tuning of SVM parameters , 2008 .

[78]  Mark A. White,et al.  Environmental life cycle comparison of algae to other bioenergy feedstocks. , 2010, Environmental science & technology.

[79]  D. Shi,et al.  Exploitation of Oil-bearing Microalgae for Biodiesel , 2008 .

[80]  Ami Ben-Amotz,et al.  The alga Dunaliella : biodiversity, physiology, genomics and biotechnology , 2009 .

[81]  Chuanping Feng,et al.  Analysis of energy conversion characteristics in liquefaction of algae , 2004 .

[82]  Robson Liberal da Silva,et al.  Seaweed meal as a protein source for the white shrimp Litopenaeus vannamei , 2009, Journal of Applied Phycology.

[83]  P. D. Martin Sonochemistry in industry, progress and prospects , 1993 .

[84]  Keri B Cantrell,et al.  Livestock waste-to-bioenergy generation opportunities. , 2008, Bioresource technology.

[85]  A. Kiperstok,et al.  Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. , 2010, Bioresource technology.

[86]  William J. Oswald,et al.  Photosynthesis in Sewage Treatment , 1957 .

[87]  Christopher W. Macosko,et al.  Effect of sample size on solvent extraction for detecting cocontinuity in polymer blends , 2004 .