Leveraging global multi-ancestry meta-analysis in the study of idiopathic pulmonary fibrosis genetics

[1]  L. Wain,et al.  Genetic overlap between idiopathic pulmonary fibrosis and COVID−19 , 2021, European Respiratory Journal.

[2]  Wei Zhou,et al.  Global Biobank Meta-analysis Initiative: powering genetic discovery across human diseases , 2021, medRxiv.

[3]  M. Stephens,et al.  Fine-mapping from summary data with the “Sum of Single Effects” model , 2021, bioRxiv.

[4]  M. Rivas,et al.  A cross-population atlas of genetic associations for 220 human phenotypes , 2021, Nature Genetics.

[5]  Jacob C. Ulirsch,et al.  Insights from complex trait fine-mapping across diverse populations , 2021, medRxiv.

[6]  Jamie L. Marshall,et al.  Single-nucleus cross-tissue molecular reference maps to decipher disease gene function , 2021, bioRxiv.

[7]  Mattia G. Bergomi,et al.  Mapping the human genetic architecture of COVID-19 , 2021, Nature.

[8]  Mark R. DeLong,et al.  An atlas connecting shared genetic architecture of human diseases and molecular phenotypes provides insight into COVID-19 susceptibility , 2021, Genome medicine.

[9]  M. Daly,et al.  Genetic variant in SPDL1 reveals novel mechanism linking pulmonary fibrosis risk and cancer protection , 2021, medRxiv.

[10]  Sri V. V. Deevi,et al.  Identification of a missense variant in SPDL1 associated with idiopathic pulmonary fibrosis , 2021, Communications biology.

[11]  Andrew P. Boughton,et al.  LocusZoom.js: interactive and embeddable visualization of genetic association study results , 2021, bioRxiv.

[12]  L. Wain,et al.  Shared genetic etiology between idiopathic pulmonary fibrosis and COVID-19 severity , 2020, EBioMedicine.

[13]  L. Wain,et al.  Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease: a mendelian randomisation study. , 2020, The Lancet. Respiratory medicine.

[14]  Irene Papatheodorou,et al.  UCSC Cell Browser: visualize your single-cell data , 2020, bioRxiv.

[15]  Gautier Koscielny,et al.  Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics , 2020, Nucleic Acids Res..

[16]  G. Heinze,et al.  Firth's Bias-Reduced Logistic Regression [R package logistf version 1.24] , 2020 .

[17]  Ayellet V. Segrè,et al.  The impact of sex on gene expression across human tissues , 2020, Science.

[18]  Gonçalo Abecasis,et al.  Computationally efficient whole-genome regression for quantitative and binary traits , 2020, Nature Genetics.

[19]  M. Kanai,et al.  Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases , 2020, Nature Genetics.

[20]  R. Claus,et al.  Postmortem Examination of Patients With COVID-19. , 2020, JAMA.

[21]  M. Rivas,et al.  GWAS of three molecular traits highlights core genes and pathways alongside a highly polygenic background , 2020, bioRxiv.

[22]  S. Walsh,et al.  Patient gender bias on the diagnosis of idiopathic pulmonary fibrosis , 2020, Thorax.

[23]  D. Gudbjartsson,et al.  Common and Rare Sequence Variants Influencing Tumor Biomarkers in Blood , 2019, Cancer Epidemiology, Biomarkers & Prevention.

[24]  Christopher D. Brown,et al.  The GTEx Consortium atlas of genetic regulatory effects across human tissues , 2019, Science.

[25]  Gerta Rücker,et al.  How to perform a meta-analysis with R: a practical tutorial , 2019, Evidence-Based Mental Health.

[26]  T. Vahlberg,et al.  Demographics and survival of patients with idiopathic pulmonary fibrosis in the FinnishIPF registry , 2019, ERJ Open Research.

[27]  J. Thompson,et al.  RNA sequencing of transplant-stage idiopathic pulmonary fibrosis lung reveals unique pathway regulation , 2019, ERJ Open Research.

[28]  A. Shilatifard,et al.  Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis , 2019, American journal of respiratory and critical care medicine.

[29]  Vilmundur Gudnason,et al.  Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis , 2019, bioRxiv.

[30]  Seung Han Baek,et al.  Exploring the cross-phenotype network region of disease modules reveals concordant and discordant pathways between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. , 2019, Human molecular genetics.

[31]  C. Benner FINEMAP: a statistical method for identifying causal genetic variants , 2019 .

[32]  M. Karsdal,et al.  The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis , 2019, Nature Communications.

[33]  Matthew Stephens,et al.  A simple new approach to variable selection in regression, with application to genetic fine-mapping , 2018, bioRxiv.

[34]  Benjamin B. Sun,et al.  New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. , 2018, Nature Genetics.

[35]  D. Gudbjartsson,et al.  Genome-wide association meta-analysis yields 20 loci associated with gallstone disease , 2018, Nature Communications.

[36]  Nuala A Sheehan,et al.  Adjustment for index event bias in genome-wide association studies of subsequent events , 2018, Nature Communications.

[37]  Xia Yang,et al.  Co-regulatory networks of human serum proteins link genetics to disease , 2018, Science.

[38]  D. Lederer,et al.  Idiopathic Pulmonary Fibrosis. , 2018, The New England journal of medicine.

[39]  Kathryn S. Burch,et al.  Leveraging polygenic functional enrichment to improve GWAS power , 2017, bioRxiv.

[40]  Brent S. Pedersen,et al.  Regulation of MUC5B Expression in Idiopathic Pulmonary Fibrosis , 2017, American journal of respiratory cell and molecular biology.

[41]  Adrianne L. Stefanski,et al.  Control of lung defence by mucins and macrophages: ancient defence mechanisms with modern functions , 2016, European Respiratory Journal.

[42]  Brent S. Pedersen,et al.  Genome-wide imputation study identifies novel HLA locus for pulmonary fibrosis and potential role for auto-immunity in fibrotic idiopathic interstitial pneumonia , 2016, BMC Genetics.

[43]  Mitchell J. Machiela,et al.  LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants , 2015, Bioinform..

[44]  Matti Pirinen,et al.  FINEMAP: efficient variable selection using summary data from genome-wide association studies , 2015, bioRxiv.

[45]  M. Daly,et al.  An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.

[46]  田原 康玄,et al.  生活習慣病とgenome-wide association study , 2015 .

[47]  Ross M. Fraser,et al.  Genetic studies of body mass index yield new insights for obesity biology , 2015, Nature.

[48]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[49]  Andres Metspalu,et al.  Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder Population , 2014, PLoS genetics.

[50]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[51]  C. Kozany,et al.  FKBPs and the Akt/mTOR pathway , 2013, Cell cycle.

[52]  Ivana V. Yang,et al.  Expression of cilium-associated genes defines novel molecular subtypes of idiopathic pulmonary fibrosis , 2013, Thorax.

[53]  I. Noth,et al.  Association between the MUC5B promoter polymorphism and survival in patients with idiopathic pulmonary fibrosis. , 2013, JAMA.

[54]  Naftali Kaminski,et al.  Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. , 2013, The Lancet. Respiratory medicine.

[55]  Brent S. Pedersen,et al.  Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis , 2013, Nature Genetics.

[56]  真田 昌 骨髄異形成症候群のgenome-wide analysis , 2013 .

[57]  Zhaoyu Li,et al.  Foxa1 and Foxa2 Are Essential for Sexual Dimorphism in Liver Cancer , 2012, Cell.

[58]  Ivana V. Yang,et al.  A common MUC5B promoter polymorphism and pulmonary fibrosis. , 2011, The New England journal of medicine.

[59]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[60]  S. Kudoh,et al.  A genome-wide association study identifies an association of a common variant in TERT with susceptibility to idiopathic pulmonary fibrosis , 2008, Journal of Medical Genetics.

[61]  Zhaoshi Jiang,et al.  Evolutionary toggling of the MAPT 17q21.31 inversion region , 2008, Nature Genetics.

[62]  G. Prins,et al.  Posterior Hox gene expression and differential androgen regulation in the developing and adult rat prostate lobes. , 2007, Endocrinology.

[63]  Steven Henikoff,et al.  SIFT: predicting amino acid changes that affect protein function , 2003, Nucleic Acids Res..

[64]  S. Thompson,et al.  How should meta‐regression analyses be undertaken and interpreted? , 2002, Statistics in medicine.

[65]  R. Maas,et al.  Abdominal B (AbdB) Hoxa genes: regulation in adult uterus by estrogen and progesterone and repression in müllerian duct by the synthetic estrogen diethylstilbestrol (DES). , 1998, Developmental biology.

[66]  Eurie L. Hong,et al.  Mapping the human genetic architecture of COVID-19 , 2021 .

[67]  E. Silverman,et al.  Susceptibility to Childhood Pneumonia: A Genome‐Wide Analysis , 2017, American journal of respiratory cell and molecular biology.

[68]  Scott F. Saccone,et al.  Novel genes identified in a high-density genome wide association study for nicotine dependence. , 2007, Human molecular genetics.

[69]  K. Johnson An Update. , 1984, Journal of food protection.

[70]  L. Wain,et al.  Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: a genome-wide association study , 2017, The Lancet. Respiratory medicine.