Effect of Annealing Solvent Solubility on the Performance of Poly(3-hexylthiophene)/Methanofullerene Solar Cells

The effect of the solubility of the annealing solvent on the performance of poly(3-hexylthiophene) (P3HT):C61-butyric acid methyl ester (PCBM) solar cells is studied. The short-circuit current (Jsc) and the fill factor (FF) increase remarkably, regardless of the type of annealing solvent, whereas a reduction of the open-circuit voltage (Voc) (of 0.1−0.2 V) is observed after solvent annealing. Interestingly, both the value of Jsc and the power conversion efficiency (PCE) are higher for the poor-solvent-annealed devices than for the good-solvent-annealed ones. A good solvent vapor induces better self-organization of P3HT than a poor solvent vapor. However, the exciton loss increases due to excessive phase separation. A study of the space-charge-limited current (SCLC) reveals no significant differences between the carrier mobilities of good- and poor-solvent-annealed devices. Furthermore, the measured photocurrent suggests that the space charges no longer limit the values of Jsc and FF for all the solvent-an...

[1]  Stephen R. Forrest,et al.  The Limits to Organic Photovoltaic Cell Efficiency , 2005 .

[2]  Zhenan Bao,et al.  Solubility-driven thin film structures of regioregular poly(3-hexyl thiophene) using volatile solvents , 2007 .

[3]  Gang Li,et al.  “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3‐hexylthiophene) and Methanofullerenes , 2007 .

[4]  Valentin D. Mihailetchi,et al.  Charge Transport and Photocurrent Generation in Poly(3‐hexylthiophene): Methanofullerene Bulk‐Heterojunction Solar Cells , 2006 .

[5]  Yun Zhao,et al.  Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic cells , 2007 .

[6]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[7]  Gang Li,et al.  Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene) , 2005 .

[8]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[9]  Mats Andersson,et al.  Trapping light in polymer photodiodes with soft embossed gratings , 2000 .

[10]  Mats Andersson,et al.  Polymer Photovoltaic Cells with Conducting Polymer Anodes , 2002 .

[11]  G. Gustafsson,et al.  Optical absorption of poly(3-alkylthiophenes) at low temperatures , 1989 .

[12]  Niyazi Serdar Sariciftci,et al.  Effects of Postproduction Treatment on Plastic Solar Cells , 2003 .

[13]  A. Pron,et al.  Effect of Molecular Weight on Spectroscopic and Spectroelectrochemical Properties of Regioregular Poly(3-hexylthiophene). , 1998, Macromolecules.

[14]  Ghassan E. Jabbour,et al.  Organic-Based Photovoltaics: Toward Low-Cost Power Generation , 2005 .

[15]  Dieter Meissner,et al.  Nanoscale Morphology of Conjugated Polymer/Fullerene‐Based Bulk‐ Heterojunction Solar Cells , 2004 .

[16]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[17]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[18]  H. Sirringhaus,et al.  Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene) , 2003 .

[19]  Jan C Hummelen,et al.  Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor. , 2007, Organic letters.

[20]  Jin Young Kim,et al.  Effect of the Molecular Weight of Poly(3-hexylthiophene) on the Morphology and Performance of Polymer Bulk Heterojunction Solar Cells , 2007 .

[21]  Dong Yun Lee,et al.  High efficiency polymer solar cells with wet deposited plasmonic gold nanodots , 2009 .

[22]  Harald Hoppe,et al.  Effect of annealing of poly(3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties , 2006 .

[23]  Byung-Kwan Yu,et al.  Time‐Dependent Morphology Evolution by Annealing Processes on Polymer:Fullerene Blend Solar Cells , 2009 .

[24]  Valentin D. Mihailetchi,et al.  Hole Transport in Poly(phenylene vinylene)/Methanofullerene Bulk‐Heterojunction Solar Cells , 2004 .

[25]  Mats Andersson,et al.  High‐Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Derivative , 2003 .

[26]  J. Park,et al.  Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics , 2007 .

[27]  Donal D. C. Bradley,et al.  Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene , 2005 .

[28]  Do Hwan Kim,et al.  Energy-level alignment at interfaces between gold and poly(3-hexylthiophene) films with two different molecular structures , 2006 .

[29]  Christoph J. Brabec,et al.  Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells , 2005 .

[30]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[31]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[32]  V. Mihailetchi,et al.  New C-84 derivative and its application in a bulk heterojunction solar cell , 2006 .

[33]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[34]  G. Wegner,et al.  Effect of Molecular Weight on the Structure and Crystallinity of Poly(3-hexylthiophene) , 2006 .

[35]  Alan J. Heeger,et al.  Spatial Fourier‐Transform Analysis of the Morphology of Bulk Heterojunction Materials Used in “Plastic” Solar Cells , 2007 .

[36]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[37]  V. Mihailetchi,et al.  Space-charge limited photocurrent. , 2005, Physical review letters.

[38]  Valentin D. Mihailetchi,et al.  Device model for the operation of polymer/fullerene bulk heterojunction solar cells , 2005 .

[39]  Mats Andersson,et al.  Influence of Solvent Mixing on the Morphology and Performance of Solar Cells Based on Polyfluorene Copolymer/Fullerene Blends , 2006 .

[40]  Klaus Meerholz,et al.  Controlling Morphology in Polymer–Fullerene Mixtures , 2008 .

[41]  Albert Rose,et al.  Double Extraction of Uniformly Generated Electron‐Hole Pairs from Insulators with Noninjecting Contacts , 1971 .

[42]  David L. Carroll,et al.  High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends , 2005 .

[43]  C. Brabec,et al.  Effect of LiF/metal electrodes on the performance of plastic solar cells , 2002 .