Limitwise monotonic sequences and degree spectra of structures

We study effective monotonic approximations of sets and sequences of sets. We show that there is a sequence of sets which has no uniform computable monotonic approximation, but has an xcomputable monotonic approximation, for every hyperimmune degree x. We also construct a Σ2 set which is not limitwise monotonic, but is x-limitwise monotonic relative to every nonzero ∆2 degree x. We show that if a sequence of sets is uniformly limitwise monotonic in x for all, except countably many, degrees x, then it has to be uniformly limitwise monotonic. Finally, we apply these results to investigate degree spectra of abelian groups, equivalence relations, and א1-categorical structures.

[1]  Stephan Wehner,et al.  Enumerations, countable structures and Turing degrees , 1998 .

[2]  Denis R. Hirschfeldt,et al.  Prime models of theories of computable linear orderings , 2001 .

[3]  László Fuchs,et al.  Infinite Abelian groups , 1970 .

[4]  Asher M. Kach Computable shuffle sums of ordinals , 2008, Arch. Math. Log..

[5]  N. G. Khisamiev,et al.  Chapter 17 Constructive abelian groups , 1998 .

[6]  Denis R. Hirschfeldt,et al.  Order-Computable Sets , 2007, Notre Dame J. Formal Log..

[7]  Russell Miller The delta02-Spectrum of A Linear Order , 2001, J. Symb. Log..

[8]  Douglas A. Cenzer,et al.  Effective categoricity of equivalence structures , 2006, Ann. Pure Appl. Log..

[9]  Asher M. Kach,et al.  Limitwise monotonic functions, sets, and degrees on computable domains , 2010, J. Symb. Log..

[10]  Rodney G. Downey,et al.  LIMITWISE MONOTONIC FUNCTIONS AND THEIR APPLICATIONS , 2011 .

[11]  Bakhadyr Khoussainov,et al.  On Initial Segments of Computable Linear Orders , 1997 .

[12]  Robert I. Soare,et al.  Bounding prime models , 2004, Journal of Symbolic Logic.

[13]  Denis R. Hirschfeldt,et al.  An Uncountably Categorical Theory Whose Only Computably Presentable Model Is Saturated , 2006, Notre Dame J. Formal Log..

[14]  John T. Baldwin,et al.  On strongly minimal sets , 1971, Journal of Symbolic Logic.

[15]  Barbara F. Csima,et al.  Degree spectra and immunity properties , 2010, Math. Log. Q..

[16]  Julia F. Knight,et al.  Enumerations in computable structure theory , 2005, Ann. Pure Appl. Log..

[17]  Theodore A. Slaman,et al.  Relative to any nonrecursive set , 1998 .

[18]  Arkadii M. Slinko,et al.  Degree spectra and computable dimensions in algebraic structures , 2002, Ann. Pure Appl. Log..

[19]  Alexander G. Melnikov,et al.  Enumerations and Completely Decomposable Torsion-Free Abelian Groups , 2009, Theory of Computing Systems.

[20]  Kenneth Harris η-representation of sets and degrees , 2008, Journal of Symbolic Logic.

[21]  André Nies,et al.  Computable Models of Theories with Few Models , 1997, Notre Dame J. Formal Log..

[22]  Douglas Cenzer Σ 01 and Π 0 1 equivalence structures ? , 2009 .