Multiple-Description Coding by Dithered Delta–Sigma Quantization
暂无分享,去创建一个
[1] Allen Gersho,et al. Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.
[2] Jan Ostergaard,et al. Multiple-Description Lattice Vector Quantization , 2007, 0707.2482.
[3] Toby Berger,et al. Successive Coding in Multiuser Information Theory , 2007, IEEE Transactions on Information Theory.
[4] Vivek K Goyal,et al. Multiple description transform coding: robustness to erasures using tight frame expansions , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[5] Ram Zamir,et al. Dithered lattice-based quantizers for multiple descriptions , 2002, IEEE Trans. Inf. Theory.
[6] Shlomo Shamai,et al. Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.
[7] Kannan Ramchandran,et al. n-channel symmetric multiple descriptions-part II:An achievable rate-distortion region , 2005, IEEE Transactions on Information Theory.
[8] J. Massey. CAUSALITY, FEEDBACK AND DIRECTED INFORMATION , 1990 .
[9] Steven Kay,et al. Modern Spectral Estimation: Theory and Application , 1988 .
[10] Kannan Ramchandran,et al. Generalized coset codes for distributed binning , 2005, IEEE Transactions on Information Theory.
[11] N. J. A. Sloane,et al. Design of asymmetric multiple description lattice vector quantizers , 2000, Proceedings DCC 2000. Data Compression Conference.
[12] Yuval Kochman,et al. Noise-Shaped Predictive Coding for Multiple Descriptions of a Colored Gaussian Source , 2008, Data Compression Conference (dcc 2008).
[13] Vivek K. Goyal,et al. Multiple description coding with many channels , 2003, IEEE Trans. Inf. Theory.
[14] Abbas El Gamal,et al. Achievable rates for multiple descriptions , 1982, IEEE Trans. Inf. Theory.
[15] T.H. Crystal,et al. Linear prediction of speech , 1977, Proceedings of the IEEE.
[16] Martin Vetterli,et al. Wavelets, approximation, and compression , 2001, IEEE Signal Process. Mag..
[17] Vivek K Goyal,et al. Quantized Frame Expansions with Erasures , 2001 .
[18] Albert Wang,et al. Multiple description decoding of overcomplete expansions using projections onto convex sets , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).
[19] S. Shamai,et al. Nested linear/lattice codes for Wyner-Ziv encoding , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).
[20] Vivek K. Goyal,et al. Quantized frame expansions as source-channel codes for erasure channels , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).
[21] Vivek K. Goyal,et al. Filter bank frame expansions with erasures , 2002, IEEE Trans. Inf. Theory.
[22] Chao Tian,et al. A new class of universal multiple description lattice quantizers , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[23] S. Tewksbury,et al. Oversampled, linear predictive and noise-shaping coders of order N g 1 , 1978 .
[24] J. Makhoul,et al. Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.
[25] Vivek K. Goyal,et al. Quantized oversampled filter banks with erasures , 2001, Proceedings DCC 2001. Data Compression Conference.
[26] R. P. Marques,et al. Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.
[27] Frank Stenger,et al. Whittaker's Cardinal Function in Retrospect* , 1971 .
[28] Gabor C. Temes,et al. Oversampling delta-sigma data converters : theory, design, and simulation , 1992 .
[29] Kannan Ramchandran,et al. -Channel Symmetric Multiple Descriptions—Part I: , 2004 .
[30] N. J. A. Sloane,et al. Multiple-description vector quantization with lattice codebooks: Design and analysis , 2001, IEEE Trans. Inf. Theory.
[31] Alan V. Oppenheim,et al. Compensation of Coefficient Erasures in Frame Representations , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.
[32] Vinay A. Vaishampayan,et al. Design of multiple description scalar quantizers , 1993, IEEE Trans. Inf. Theory.
[33] N. J. A. Sloane,et al. Asymmetric multiple description lattice vector quantizers , 2002, IEEE Trans. Inf. Theory.
[34] Gabor C. Temes,et al. Oversampled, Linear Predictive and NoiseShaping Coders of Order N , 1992 .
[35] Jesper Jensen,et al. Source-Channel Erasure Codes with Lattice Codebooks for Multiple Description Coding , 2006, 2006 IEEE International Symposium on Information Theory.
[36] A. W. M. van den Enden,et al. Discrete Time Signal Processing , 1989 .
[37] Thomas C. Hales. Sphere packings, I , 1997, Discret. Comput. Geom..
[38] Meir Feder,et al. On lattice quantization noise , 1996, IEEE Trans. Inf. Theory.
[39] L. Ozarow,et al. On a source-coding problem with two channels and three receivers , 1980, The Bell System Technical Journal.
[40] Ram Zamir. Gaussian codes and Shannon bounds for multiple descriptions , 1999, IEEE Trans. Inf. Theory.
[41] N. Jayant. Subsampling of a DPCM speech channel to provide two “self-contained” half-rate channels , 1981, The Bell System Technical Journal.
[42] Helmut Bölcskei,et al. Noise reduction in oversampled filter banks using predictive quantization , 2001, IEEE Trans. Inf. Theory.
[43] Chao Tian,et al. Multiple Description Quantization Via Gram–Schmidt Orthogonalization , 2005, IEEE Transactions on Information Theory.
[44] Kannan Ramchandran,et al. n-channel symmetric multiple descriptions - part I: (n, k) source-channel erasure codes , 2004, IEEE Transactions on Information Theory.
[45] W. Fischer,et al. Sphere Packings, Lattices and Groups , 1990 .
[46] A. Calderbank,et al. On reducing granular distortion in multiple description quantization , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[47] Alan V. Oppenheim,et al. Quantization Noise Shaping on Arbitrary Frame Expansions , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..
[48] G. Bachman,et al. Fourier and Wavelet Analysis , 2002 .
[49] Meir Feder,et al. Information rates of pre/post-filtered dithered quantizers , 1993, IEEE Trans. Inf. Theory.
[50] Yuval Kochman,et al. Achieving the Gaussian Rate–Distortion Function by Prediction , 2007, IEEE Transactions on Information Theory.
[51] David L. Neuhoff,et al. Quantization , 2022, IEEE Trans. Inf. Theory.
[52] Jesper Jensen,et al. n-channel asymmetric multiple-description lattice vector quantization , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[53] Jesper Jensen,et al. n-channel entropy-constrained multiple-description lattice vector quantization , 2006, IEEE Transactions on Information Theory.
[54] Meir Feder,et al. On universal quantization by randomized uniform/lattice quantizers , 1992, IEEE Trans. Inf. Theory.