Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis

In this paper, we consider the numerical solution of the time-fractional diffusion-wave equation. Essentially, the time fractional diffusion-wave equation differs from the standard diffusion-wave equation in the time derivative term. We propose a spectral collocation method in both temporal and spatial discretizations with a spectral expansion of Jacobi interpolation polynomial for this equation. The convergence of the method is rigorously established. Numerical tests are carried out to confirm the theoretical results.

[1]  Yunqing Huang,et al.  SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS , 2014 .

[2]  Mridula Garg,et al.  Matrix method for numerical solution of space-time fractional diffusion-wave equations with three space variables , 2014 .

[3]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[4]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[5]  R. Nigmatullin To the Theoretical Explanation of the “Universal Response” , 1984 .

[6]  Giuseppe Mastroianni,et al.  Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey , 2001 .

[7]  Fawang Liu,et al.  Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation , 2008, Appl. Math. Comput..

[8]  M. Meerschaert,et al.  Numerical methods for solving the multi-term time-fractional wave-diffusion equation , 2012, Fractional calculus & applied analysis.

[9]  Nasser Hassan Sweilam,et al.  Numerical Simulations for the Space-Time Variable Order Nonlinear Fractional Wave Equation , 2013, J. Appl. Math..

[10]  Ali H. Bhrawy,et al.  A New Legendre Collocation Method for Solving a Two-Dimensional Fractional Diffusion Equation , 2014 .

[11]  Yanping Chen,et al.  A NOTE ON JACOBI SPECTRAL-COLLOCATION METHODS FOR WEAKLY SINGULAR VOLTERRA INTEGRAL EQUATIONS WITH SMOOTH SOLUTIONS * , 2013 .

[12]  Tao Tang,et al.  Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel , 2010, Math. Comput..

[13]  R. Nigmatullin The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.

[14]  Yunqing Huang,et al.  Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations , 2014 .

[15]  Yin Yang,et al.  Convergence Analysis of Legendre-Collocation Methods for Nonlinear Volterra Type Integro Equations , 2015 .

[16]  Dumitru Baleanu,et al.  A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations , 2015, J. Comput. Phys..

[17]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[18]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[19]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[20]  David L. Ragozin,et al.  Constructive polynomial approximation on spheres and projective spaces. , 1971 .

[21]  Y. Yang Jacobi spectral Galerkin methods for Volterra integral equations with weakly singular kernel , 2016 .

[22]  Changpin Li,et al.  Numerical Algorithms for the Fractional Diffusion-Wave Equation with Reaction Term , 2013 .

[23]  Osama H. Mohammed,et al.  Numerical solution for the time-Fractional Diffusion-wave Equations by using Sinc-Legendre Collocation Method , 2015 .

[24]  David L. Ragozin,et al.  Polynomial approximation on compact manifolds and homogeneous spaces , 1970 .

[25]  G. Fix,et al.  Least squares finite-element solution of a fractional order two-point boundary value problem , 2004 .

[26]  Y. Yang Jacobi spectral Galerkin methods for fractional integro-differential equations , 2015 .

[27]  Paul Nevai,et al.  Mean convergence of Lagrange interpolation. III , 1984 .