Photoelectrochemical performance enhanced by a nickel oxide-hematite p-n junction photoanode.

A p-n junction photoanode has been fabricated by depositing p-type NiO nanoparticles on the n-type hematite thin film. Such a photoanode is employed for a photoelectrochemical cell. NiO not only facilitates the extraction of accumulated holes from hematite via the p-n junction, but also lowers the barrier for oxygen evolution reaction.

[1]  Joop Schoonman,et al.  Solar hydrogen production with nanostructured metal oxides , 2008 .

[2]  Li-ping Zhu,et al.  Valence-band offset of p-NiO/n-ZnO heterojunction measured by X-ray photoelectron spectroscopy , 2011 .

[3]  Michael Grätzel,et al.  WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach , 2009 .

[4]  H. Ogasawara,et al.  Water Adsorption on α-Fe2O3(0001) at near Ambient Conditions , 2010 .

[5]  C. Wolden,et al.  Activation of hematite nanorod arrays for photoelectrochemical water splitting. , 2011, ChemSusChem.

[6]  A. Manivannan,et al.  Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes , 2011 .

[7]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[8]  Song Li,et al.  Enhanced photoelectrochemical activity for Cu and Ti doped hematite: The first principles calculations , 2011 .

[9]  H. Kozuka,et al.  Photoelectrochemical Properties of Fe2O3−SnO2Films Prepared by Sol−Gel Method , 2011 .

[10]  M. Grätzel,et al.  Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger , 2011 .

[11]  Jun Zhang,et al.  Synthesis and gas sensing properties of α-Fe2O3@ZnO core–shell nanospindles , 2011, Nanotechnology.

[12]  Thomas W. Hamann,et al.  Current and Voltage Limiting Processes in Thin Film Hematite Electrodes , 2011 .

[13]  Michael Grätzel,et al.  Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. , 2010, Angewandte Chemie.

[14]  Michael Grätzel,et al.  Passivating surface states on water splitting hematite photoanodes with alumina overlayers , 2011 .

[15]  A. Manivannan,et al.  Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. , 2009, Journal of the American Chemical Society.

[16]  Ryan L. Spray,et al.  Photoactivity of Transparent Nanocrystalline Fe2O3 Electrodes Prepared via Anodic Electrodeposition , 2009 .

[17]  A. Manivannan,et al.  Shape-enhanced photocatalytic activity of single-crystalline anatase TiO(2) (101) nanobelts. , 2010, Journal of the American Chemical Society.

[18]  K. G. Gopchandran,et al.  Nanostructured mesoporous nickel oxide thin films , 2007 .

[19]  Yichuan Ling,et al.  Facile synthesis of highly photoactive α-Fe₂O₃-based films for water oxidation. , 2011, Nano letters.

[20]  E. Leite,et al.  Magnetite colloidal nanocrystals: a facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting. , 2011, Journal of the American Chemical Society.

[21]  Keiko Uemura,et al.  Photoelectrochemical reduction of CO(2) in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex. , 2010, Chemical communications.

[22]  Anke Weidenkaff,et al.  Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. , 2010, Journal of the American Chemical Society.

[23]  Praveen Kumar,et al.  Electrodeposited zirconium-doped a-Fe 2O 3 thin film for photoelectrochemical water splitting , 2011 .

[24]  Kyoung-Shin Choi,et al.  Photodeposition of Co-Based Oxygen Evolution Catalysts on α-Fe2O3 Photoanodes , 2011 .

[25]  Fu-Ren F. Fan,et al.  Rapid Screening of Effective Dopants for Fe2O3 Photocatalysts with Scanning Electrochemical Microscopy and Investigation of Their Photoelectrochemical Properties , 2009 .

[26]  D. Gamelin,et al.  Photoelectrochemical water oxidation by cobalt catalyst ("Co-Pi")/alpha-Fe(2)O(3) composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. , 2010, Journal of the American Chemical Society.