Predictive Information in a Nonequilibrium Critical Model

We propose predictive information, that is, information between a long past of duration T and the entire infinitely long future of a time series, as a general order parameter to study phase transitions in physical systems independently of the underlying dynamics. It can be used, in particular, to study nonequilibrium transitions and other exotic transitions, where a simpler order parameter cannot be identified using traditional symmetry arguments. As an example, we calculate predictive information for a stochastic nonequilibrium dynamics problem that forms an absorbing state under a continuous change of a parameter. The information at the transition point diverges as ∝logT, and we calculate the expression for a smooth crossover to ∝T0 away from the transition.

[1]  Robert Shaw,et al.  The Dripping Faucet As A Model Chaotic System , 1984 .

[2]  D. Vvedensky,et al.  Non-equilibrium scaling in the Schlogl model , 1985 .

[3]  B. Gaveau,et al.  Theory of nonequilibrium first-order phase transitions for stochastic dynamics , 1998 .

[4]  J. P. Garrahan,et al.  First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories , 2008, 0810.5298.

[5]  J. Cardy,et al.  Entanglement entropy and conformal field theory , 2009, 0905.4013.

[6]  Cecile Monthus,et al.  Non-equilibrium steady states: maximization of the Shannon entropy associated with the distribution of dynamical trajectories in the presence of constraints , 2010, 1011.1342.

[7]  Susanne Still,et al.  The thermodynamics of prediction , 2012, Physical review letters.

[8]  D. Sherrington,et al.  Quantum mechanical and information theoretic view on classical glass transitions , 2010, 1003.3832.

[9]  J. Kurchan,et al.  Order in glassy systems , 2010, 1008.4068.

[10]  K. Binder,et al.  Critical phenomena at surfaces , 1990 .

[11]  Vivien Lecomte,et al.  Mapping out-of-equilibrium into equilibrium in one-dimensional transport models , 2008, 0809.0709.

[12]  P. Grassberger Toward a quantitative theory of self-generated complexity , 1986 .

[13]  Pierre Gaspard,et al.  Erratum: Time-Reversed Dynamical Entropy and Irreversibility in Markovian Random Processes , 2004 .

[14]  J P Garrahan,et al.  Dynamical first-order phase transition in kinetically constrained models of glasses. , 2007, Physical review letters.

[15]  J. Crutchfield,et al.  Regularities unseen, randomness observed: levels of entropy convergence. , 2001, Chaos.

[16]  Pierre Le Doussal,et al.  Functional renormalization group and the field theory of disordered elastic systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Galin L. Jones On the Markov chain central limit theorem , 2004, math/0409112.

[18]  P. Gaspard Time-Reversed Dynamical Entropy and Irreversibility in Markovian Random Processes , 2004 .

[19]  Paul M. B. Vitányi,et al.  Meaningful Information , 2001, IEEE Transactions on Information Theory.

[20]  V. Lecomte,et al.  Thermodynamic Formalism for Systems with Markov Dynamics , 2007 .

[21]  Nikolai K. Vereshchagin,et al.  Kolmogorov's structure functions and model selection , 2002, IEEE Transactions on Information Theory.

[22]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[23]  James P. Crutchfield,et al.  Computational Mechanics: Pattern and Prediction, Structure and Simplicity , 1999, ArXiv.

[24]  G. Biroli,et al.  Diverging length scale and upper critical dimension in the Mode-Coupling Theory of the glass transition , 2004, cond-mat/0401260.

[25]  J. P. Garrahan,et al.  Dynamic Order-Disorder in Atomistic Models of Structural Glass Formers , 2009, Science.

[26]  Herbert Spohn,et al.  Long range correlations for stochastic lattice gases in a non-equilibrium steady state , 1983 .

[27]  Germany,et al.  Wilson renormalization of a reaction–diffusion process , 1997, cond-mat/9706197.

[28]  Naftali Tishby,et al.  Complexity through nonextensivity , 2001, physics/0103076.

[29]  A. U.S.,et al.  Predictability , Complexity , and Learning , 2002 .

[30]  Pierre Gaspard,et al.  Chaos, Scattering and Statistical Mechanics , 1998 .

[31]  A. Dinner,et al.  Field theoretic treatment of an effective action for a model of catalyzed autoamplification. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .