Improved Overshoot Estimation in Pole Placements and Its Application in Observer-Based Stabilization for Switched Systems

In this note, we first establish an improved and generalized overshoot estimation in pole placements. Then this estimation is applied to the observer-based output feedback stabilization problem for switched linear systems with arbitrary switching frequency. Our results complement those results of Cheng about the state feedback stabilization of switched linear systems

[1]  A. Morse,et al.  Stability of switched systems with average dwell-time , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[2]  Yuguang Fang,et al.  Stabilization of continuous-time jump linear systems , 2002, IEEE Trans. Autom. Control..

[3]  Long Wang,et al.  On Controllability of Switched Linear Systems , 2002, IEEE Transactions on Automatic Control.

[4]  Daizhan Cheng,et al.  Stabilization of planar switched systems , 2004, Syst. Control. Lett..

[5]  S.M. Williams,et al.  Adaptive frequency domain control of PWM switched power line conditioner , 1990, Fifth Annual Proceedings on Applied Power Electronics Conference and Exposition.

[6]  Zvi Artstein,et al.  On stabilization of switched linear systems , 2008, Syst. Control. Lett..

[7]  Daniel Liberzon,et al.  Lie-Algebraic Stability Criteria for Switched Systems , 2001, SIAM J. Control. Optim..

[8]  Guangming Xie,et al.  Controllability and stabilizability of switched linear-systems , 2003, Syst. Control. Lett..

[9]  A. Morse,et al.  Stability of switched systems: a Lie-algebraic condition ( , 1999 .

[10]  Soura Dasgupta,et al.  Some properties of the matrix exponential , 2001 .

[11]  Guangming Xie,et al.  Reachability realization and stabilizability of switched linear discrete-time systems☆ , 2003 .

[12]  Shuzhi Sam Ge,et al.  Controllability and reachability criteria for switched linear systems , 2002, Autom..

[13]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[14]  Clyde F. Martin,et al.  A Converse Lyapunov Theorem for a Class of Dynamical Systems which Undergo Switching , 1999, IEEE Transactions on Automatic Control.

[15]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[16]  Robert Shorten,et al.  Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for M stable second order linear time-invariant systems , 1999, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[17]  D. Cheng,et al.  A note on overshoot estimation in pole placements , 2004 .

[18]  A. Morse Supervisory control of families of linear set-point controllers Part I. Exact matching , 1996, IEEE Trans. Autom. Control..

[19]  Daizhan Cheng,et al.  Erratum to “a note on overshoot estimation in pole placements” , 2005 .

[20]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[21]  F. Xue,et al.  Necessary and sufficient conditions for adaptive stablizability of jump linear systems , 2001, Commun. Inf. Syst..

[22]  Daizhan Cheng,et al.  On quadratic Lyapunov functions , 2003, IEEE Trans. Autom. Control..

[23]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[24]  A. Morse,et al.  A cyclic switching strategy for parameter-adaptive control , 1994, IEEE Trans. Autom. Control..