ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables

Estimating the gradients for binary variables is a task that arises frequently in various domains, such as training discrete latent variable models. What has been commonly used is a REINFORCE based Monte Carlo estimation method that uses either independent samples or pairs of negatively correlated samples. To better utilize more than two samples, we propose ARMS, an Antithetic REINFORCE-based Multi-Sample gradient estimator. ARMS uses a copula to generate any number of mutually antithetic samples. It is unbiased, has low variance, and generalizes both DisARM, which we show to be ARMS with two samples, and the leave-one-out REINFORCE (LOORF) estimator, which is ARMS with uncorrelated samples. We evaluate ARMS on several datasets for training generative models, and our experimental results show that it outperforms competing methods. We also develop a version of ARMS for optimizing the multi-sample variational bound, and show that it outperforms both VIMCO and DisARM. The code is publicly available1.

[1]  Max Welling,et al.  Buy 4 REINFORCE Samples, Get a Baseline for Free! , 2019, DeepRLStructPred@ICLR.

[2]  Mike Wu,et al.  Differentiable Antithetic Sampling for Variance Reduction in Stochastic Variational Inference , 2019, AISTATS.

[3]  David Duvenaud,et al.  Backpropagation through the Void: Optimizing control variates for black-box gradient estimation , 2017, ICLR.

[4]  Stefano Ermon,et al.  Adaptive Antithetic Sampling for Variance Reduction , 2019, ICML.

[5]  Ronald J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[6]  Michael I. Jordan,et al.  Variational Bayesian Inference with Stochastic Search , 2012, ICML.

[7]  Ruslan Salakhutdinov,et al.  Importance Weighted Autoencoders , 2015, ICLR.

[8]  Pravin K. Trivedi,et al.  Copula Modeling: An Introduction for Practitioners , 2007 .

[9]  Yee Whye Teh,et al.  The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables , 2016, ICLR.

[10]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[11]  Michael Figurnov,et al.  Measure-Valued Derivatives for Approximate Bayesian Inference , 2019 .

[12]  Ben Poole,et al.  Categorical Reparameterization with Gumbel-Softmax , 2016, ICLR.

[13]  Mingyuan Zhou,et al.  ARM: Augment-REINFORCE-Merge Gradient for Stochastic Binary Networks , 2018, ICLR.

[14]  David M. Blei,et al.  The Generalized Reparameterization Gradient , 2016, NIPS.

[15]  G. Tian,et al.  Dirichlet and Related Distributions: Theory, Methods and Applications , 2011 .

[16]  Andriy Mnih,et al.  Variational Inference for Monte Carlo Objectives , 2016, ICML.

[17]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[18]  Nhat Ho,et al.  Probabilistic Best Subset Selection by Gradient-Based Optimization , 2020, 2006.06448.

[19]  Yoshua Bengio,et al.  Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation , 2013, ArXiv.

[20]  Sergey Levine,et al.  MuProp: Unbiased Backpropagation for Stochastic Neural Networks , 2015, ICLR.

[21]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[22]  Jascha Sohl-Dickstein,et al.  REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models , 2017, NIPS.

[23]  Mingyuan Zhou,et al.  ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables , 2019, ICML.

[24]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[25]  Peter W. Glynn,et al.  Likelihood ratio gradient estimation for stochastic systems , 1990, CACM.

[26]  Tommi S. Jaakkola,et al.  Direct Optimization through arg max for Discrete Variational Auto-Encoder , 2018, NeurIPS.

[27]  Michael Figurnov,et al.  Monte Carlo Gradient Estimation in Machine Learning , 2019, J. Mach. Learn. Res..

[28]  Sean Gerrish,et al.  Black Box Variational Inference , 2013, AISTATS.

[29]  George Tucker,et al.  DisARM: An Antithetic Gradient Estimator for Binary Latent Variables , 2020, NeurIPS.

[30]  Dustin Tran,et al.  Automatic Differentiation Variational Inference , 2016, J. Mach. Learn. Res..

[31]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[32]  Miguel Lázaro-Gredilla,et al.  Local Expectation Gradients for Black Box Variational Inference , 2015, NIPS.

[33]  Karol Gregor,et al.  Neural Variational Inference and Learning in Belief Networks , 2014, ICML.

[34]  Steffen Hoernig,et al.  On the Minimum Correlation between Symmetrically Distributed Random Variables , 2018, Oper. Res. Lett..

[35]  David A. Knowles,et al.  On Using Control Variates with Stochastic Approximation for Variational Bayes and its Connection to Stochastic Linear Regression , 2014, 1401.1022.