Daunorubicin-Loaded DNA Origami Nanostructures Circumvent Drug-Resistance Mechanisms in a Leukemia Model.

Many cancers show primary or acquired drug resistance due to the overexpression of efflux pumps. A novel mechanism to circumvent this is to integrate drugs, such as anthracycline antibiotics, with nanoparticle delivery vehicles that can bypass intrinsic tumor drug-resistance mechanisms. DNA nanoparticles serve as an efficient binding platform for intercalating drugs (e.g., anthracyclines doxorubicin and daunorubicin, which are widely used to treat acute leukemias) and enable precise structure design and chemical modifications, for example, for incorporating targeting capabilities. Here, DNA nanostructures are utilized to circumvent daunorubicin drug resistance at clinically relevant doses in a leukemia cell line model. The fabrication of a rod-like DNA origami drug carrier is reported that can be controllably loaded with daunorubicin. It is further directly verified that nanostructure-mediated daunorubicin delivery leads to increased drug entry and retention in cells relative to free daunorubicin at equal concentrations, which yields significantly enhanced drug efficacy. Our results indicate that DNA origami nanostructures can circumvent efflux-pump-mediated drug resistance in leukemia cells at clinically relevant drug concentrations and provide a robust DNA nanostructure design that could be implemented in a wide range of cellular applications due to its remarkably fast self-assembly (≈5 min) and excellent stability in cell culture conditions.

[1]  M. Reggiani,et al.  ON PHYSICO-CHEMICAL INTERACTIONS BETWEEN DAUNOMYCIN AND NUCLEIC ACIDS. , 1965, Biochimica et biophysica acta.

[2]  A. Marco Mechanism of action of daunomycin. , 1967 .

[3]  S. Siegel,et al.  Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. , 1976, Cancer research.

[4]  S. Collins,et al.  Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture , 1977, Nature.

[5]  S. Collins,et al.  Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia , 1979 .

[6]  S. Martin Absorption and circular dichroic spectral studies on the self‐association of daunorubicin , 1980, Biopolymers.

[7]  H. Maeda,et al.  A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. , 1986, Cancer research.

[8]  D. Marquardt,et al.  Mechanisms of multidrug resistance in HL60 cells: detection of resistance-associated proteins with antibodies against synthetic peptides that correspond to the deduced sequence of P-glycoprotein. , 1990, Cancer research.

[9]  John Calvin Reed,et al.  Co-expression of several molecular mechanisms of multidrug resistance and their significance for paclitaxel cytotoxicity in human AML HL-60 cells , 1997, Leukemia.

[10]  A. Garnier-Suillerot,et al.  Comparison of the interaction of doxorubicin, daunorubicin, idarubicin and idarubicinol with large unilamellar vesicles. Circular dichroism study. , 1998, Biochimica et biophysica acta.

[11]  M. Baccarani,et al.  P‐glycoprotein (PGP), lung resistance‐related protein (LRP) and multidrug resistance‐associated protein (MRP) expression in acute promyelocytic leukaemia , 2000, British journal of haematology.

[12]  K. Bhalla,et al.  Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-x(L). , 2000, Blood.

[13]  N. Seeman DNA in a material world , 2003, Nature.

[14]  Glen E Kellogg,et al.  Hydropathic analysis of the free energy differences in anthracycline antibiotic binding to DNA. , 2003, Nucleic acids research.

[15]  Matthias John,et al.  Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs , 2004, Nature.

[16]  A. Anagnostopoulos,et al.  The use of liposomal daunorubicin (DaunoXome) in acute myeloid leukemia , 2005, Leukemia & lymphoma.

[17]  Ulrich Beyer,et al.  Liposomal encapsulated anti-cancer drugs. , 2005, Anti-cancer drugs.

[18]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[19]  Thomas S. Lin,et al.  Targeting CD37-positive lymphoid malignancies with a novel engineered small modular immunopharmaceutical. , 2007, Blood.

[20]  James R Heath,et al.  Nanotechnology and cancer. , 2008, Annual review of medicine.

[21]  Mark E. Davis,et al.  Nanoparticle therapeutics: an emerging treatment modality for cancer , 2008, Nature Reviews Drug Discovery.

[22]  Yamuna Krishnan,et al.  A DNA nanomachine that maps spatial and temporal pH changes inside living cells. , 2009, Nature nanotechnology.

[23]  Soong Ho Um,et al.  Multifunctional nanoarchitectures from DNA-based ABC monomers , 2009, Nature nanotechnology.

[24]  Shawn M. Douglas,et al.  Multilayer DNA origami packed on a square lattice. , 2009, Journal of the American Chemical Society.

[25]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[26]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[27]  H. Dombret,et al.  An old AML drug revisited. , 2009, The New England journal of medicine.

[28]  H. Döhner,et al.  High-dose daunorubicin in older patients with acute myeloid leukemia. , 2009, The New England journal of medicine.

[29]  Kersten S. Rabe,et al.  Orthogonal protein decoration of DNA origami. , 2010, Angewandte Chemie.

[30]  F. Gao,et al.  Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and MDR1 shRNA expression vector in leukemia cells , 2010, International journal of nanomedicine.

[31]  Joseph M. DeSimone,et al.  Strategies in the design of nanoparticles for therapeutic applications , 2010, Nature Reviews Drug Discovery.

[32]  H. Pei,et al.  Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. , 2011, ACS nano.

[33]  Dong-Ming Huang,et al.  Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. , 2011, ACS nano.

[34]  M. Jensen,et al.  Population pharmacokinetics of cytarabine, etoposide, and daunorubicin in the treatment for acute myeloid leukemia , 2012, Cancer Chemotherapy and Pharmacology.

[35]  Tim Liedl,et al.  Cellular immunostimulation by CpG-sequence-coated DNA origami structures. , 2011, ACS nano.

[36]  M. Grever,et al.  Phase I trial of lenalidomide and CCI-779 in patients with relapsed multiple myeloma: evidence for lenalidomide-CCI-779 interaction via P-glycoprotein. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[37]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[38]  Tim Liedl,et al.  DNA origami-templated growth of arbitrarily shaped metal nanoparticles. , 2011, Small.

[39]  T. G. Martin,et al.  Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature , 2012, Science.

[40]  Mingfei Yao,et al.  A physical model for the size-dependent cellular uptake of nanoparticles modified with cationic surfactants , 2012, International journal of nanomedicine.

[41]  Daniel G. Anderson,et al.  Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery , 2012, Nature nanotechnology.

[42]  M. Dewhirst,et al.  Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors. , 2012, Cancer research.

[43]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[44]  Andrew Emili,et al.  Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. , 2012, Journal of the American Chemical Society.

[45]  Björn Högberg,et al.  DNA origami delivery system for cancer therapy with tunable release properties. , 2012, ACS nano.

[46]  Hao Yan,et al.  DNA origami as a carrier for circumvention of drug resistance. , 2012, Journal of the American Chemical Society.

[47]  Robert Langer,et al.  Nanoparticle delivery of cancer drugs. , 2012, Annual review of medicine.

[48]  Matthieu Wilhelm,et al.  Multistep drug intercalation: molecular dynamics and free energy studies of the binding of daunomycin to DNA. , 2012, Journal of the American Chemical Society.

[49]  Sanjiv S Gambhir,et al.  Nanooncology: The future of cancer diagnosis and therapy , 2013, CA: a cancer journal for clinicians.

[50]  Yamuna Krishnan,et al.  Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. , 2013, Nature nanotechnology.

[51]  Anusuya Banerjee,et al.  Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger. , 2013, Angewandte Chemie.

[52]  Tomoko Emura,et al.  RNA-templated DNA origami structures. , 2013, Chemical communications.

[53]  M. Caligiuri,et al.  Comparative Assessment of Clinically Utilized CD20-Directed Antibodies in Chronic Lymphocytic Leukemia Cells Reveals Divergent NK Cell, Monocyte, and Macrophage Properties , 2013, The Journal of Immunology.

[54]  V. Linko,et al.  The enabled state of DNA nanotechnology. , 2013, Current opinion in biotechnology.

[55]  Qiao Jiang,et al.  DNA origami as an in vivo drug delivery vehicle for cancer therapy. , 2014, ACS nano.

[56]  Björn Högberg,et al.  Spatial control of membrane receptor function using ligand nanocalipers , 2014, Nature Methods.

[57]  V. Petrenko,et al.  Enhanced tumor delivery and antitumor activity in vivo of liposomal doxorubicin modified with MCF-7-specific phage fusion protein. , 2014, Nanomedicine : nanotechnology, biology, and medicine.

[58]  T. G. Martin,et al.  Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions , 2014, Angewandte Chemie.

[59]  Stephanie A. Morris,et al.  Nanotechnologies in cancer treatment and diagnosis. , 2014, Journal of the National Comprehensive Cancer Network : JNCCN.

[60]  J. Cortes,et al.  Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. , 2014, Blood.

[61]  William M. Shih,et al.  Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability , 2014, ACS nano.

[62]  John C Kraft,et al.  Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. , 2014, Journal of pharmaceutical sciences.

[63]  J. Kjems,et al.  Quantification of cellular uptake of DNA nanostructures by qPCR. , 2014, Methods.

[64]  Tao Zhang,et al.  Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. , 2013, Nature nanotechnology.

[65]  H. Su,et al.  DNA origami compliant nanostructures with tunable mechanical properties. , 2014, ACS nano.

[66]  William M. Shih,et al.  Addressing the Instability of DNA Nanostructures in Tissue Culture , 2014, ACS nano.

[67]  Johannes B. Woehrstein,et al.  Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT , 2014, Nature Methods.

[68]  R. Srivastava,et al.  Nanodrug delivery in reversing multidrug resistance in cancer cells , 2014, Front. Pharmacol..

[69]  G. Nienhaus,et al.  Engineered nanoparticles interacting with cells: size matters , 2014, Journal of Nanobiotechnology.

[70]  Jarno Salonen,et al.  Inhibition of Multidrug Resistance of Cancer Cells by Co‐Delivery of DNA Nanostructures and Drugs Using Porous Silicon Nanoparticles@Giant Liposomes , 2015 .