The characterizations of hemirings in terms of fuzzy soft h-ideals

Maji et al. introduced the concept of a fuzzy soft set, which is an extension to the concept of a soft set. In this paper, we apply the concept of a fuzzy soft set to hemiring theory. The concepts of $$(\in_{\gamma},\in_{\gamma} \! \vee { q_{\delta}})$$-fuzzy soft left h-ideals (right h-ideals, h-bi-ideals, and h-quasi-ideals) are introduced, and some related properties are obtained. The notion of left (right) h-hemiregular hemirings is provided. Some characterization theorems of (left) h-hemiregular and (left) duo hemirings are derived in terms of $$(\in_{\gamma},\in_{\gamma} \! \vee { q_{\delta}})$$-fuzzy soft left (right) h-ideals, $$(\in_{\gamma},\in_{\gamma} \! \vee { q_{\delta}})$$-fuzzy soft h-bi-ideals, and $$(\in_{\gamma},\in_{\gamma} \! \vee { q_{\delta}})$$-fuzzy soft h-quasi-ideals.

[1]  Naim Çagman,et al.  Soft sets and soft groups , 2007, Inf. Sci..

[2]  Wieslaw A. Dudek,et al.  (alpha, Beta)-fuzzy Ideals of Hemirings , 2009, Comput. Math. Appl..

[3]  Halis Aygün,et al.  Introduction to fuzzy soft groups , 2009, Comput. Math. Appl..

[4]  A. R. Roy,et al.  Soft set theory , 2003 .

[5]  Young Bae Jun,et al.  On fuzzy h-ideals in hemirings , 2004, Inf. Sci..

[6]  Naim Çagman,et al.  Soft matrix theory and its decision making , 2010, Comput. Math. Appl..

[7]  Young Bae Jun,et al.  An adjustable approach to fuzzy soft set based decision making , 2010, J. Comput. Appl. Math..

[8]  Keyun Qin,et al.  On soft equality , 2010, J. Comput. Appl. Math..

[9]  Bekir Tanay,et al.  Computers and Mathematics with Applications , 2022 .

[10]  A. R. Roy,et al.  A fuzzy soft set theoretic approach to decision making problems , 2007 .

[11]  Naim Çag ˘ man,et al.  Soft set theory and uni-int decision making , 2010 .

[12]  Shamik Ghosh,et al.  Fuzzy k-ideals of semirings , 1998, Fuzzy Sets Syst..

[13]  Young Bae Jun,et al.  Soft set theory applied to ideals in d-algebras , 2009, Comput. Math. Appl..

[14]  Eric C. C. Tsang,et al.  The parameterization reduction of soft sets and its applications , 2005 .

[15]  Yunqiang Yin,et al.  The h-hemiregular Fuzzy Duo Hemirings , 2007 .

[16]  H. Kim,et al.  ON FUZZY k-IDEALS IN SEMIRINGS , 2001 .

[17]  Pinaki Majumdar,et al.  Generalised fuzzy soft sets , 2010, Comput. Math. Appl..

[18]  Jianming Zhan,et al.  Generalized fuzzy h-bi-ideals and h-quasi-ideals of hemirings , 2009, Inf. Sci..

[19]  Yunqiang Yin,et al.  The Characterization of h -semisimple Hemirings , 2009 .

[20]  Xiaoyan Liu,et al.  On some new operations in soft set theory , 2009, Comput. Math. Appl..

[21]  Sujit Kumar Sardar,et al.  ON JACOBSON RADICAL OF A SEMIRING , 2005 .

[22]  Yan Zou,et al.  Data analysis approaches of soft sets under incomplete information , 2008, Knowl. Based Syst..

[23]  Young Bae Jun,et al.  Soft semirings , 2008, Comput. Math. Appl..

[24]  Naim Çagman,et al.  Soft set theory and uni-int decision making , 2010, Eur. J. Oper. Res..

[25]  Young Bae Jun,et al.  Applications of soft sets in ideal theory of BCK/BCI-algebras , 2008, Inf. Sci..

[26]  Jianming Zhan,et al.  Fuzzy h-ideals of hemirings , 2007, Inf. Sci..

[27]  Athar Kharal,et al.  On Fuzzy Soft Sets , 2009, Adv. Fuzzy Syst..

[28]  A. R. Roy,et al.  An application of soft sets in a decision making problem , 2002 .

[29]  Yong Tang,et al.  An adjustable approach to intuitionistic fuzzy soft sets based decision making , 2011 .

[30]  Zhi Xiao,et al.  A combined forecasting approach based on fuzzy soft sets , 2009 .

[31]  D. Molodtsov Soft set theory—First results , 1999 .

[32]  Young Bae Jun,et al.  Soft BCK/BCI-algebras , 2008, Comput. Math. Appl..