Lyapunov inequalities and stability for linear Hamiltonian systems

Abstract In this paper, we will establish several Lyapunov inequalities for linear Hamiltonian systems, which unite and generalize the most known ones. For planar linear Hamiltonian systems, the connection between Lyapunov inequalities and estimates of eigenvalues of stationary Dirac operators will be given, and some optimal stability criterion will be proved.

[1]  Meirong Zhang,et al.  Continuity in weak topology: First order linear systems of ODE , 2010 .

[2]  A. Cañada,et al.  Matrix Lyapunov inequalities for ordinary and elliptic partial differential equations , 2009, 0906.1093.

[3]  Meirong Zhang Sobolev Inequalities and Ellipticity of Planar Linear Hamiltonian Systems , 2008 .

[4]  Xiaoping Wang Stability criteria for linear periodic Hamiltonian systems , 2010 .

[5]  A. Cabada,et al.  A generalized anti-maximum principle for the periodic one dimensional p-Laplacian with sign changing potential , 2010 .

[6]  A. Cañada,et al.  Lyapunov inequalities for Neumann boundary conditions at higher eigenvalues , 2009, 0906.1091.

[7]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[8]  Billur Kaymakçalan,et al.  Lyapunov inequalities for discrete linear Hamiltonian systems , 2003 .

[9]  F. V. Vleck,et al.  Stability and Asymptotic Behavior of Differential Equations , 1965 .

[10]  Meirong Zhang,et al.  Non-Degeneracy and Periodic Solutions of Semilinear Differential Equations with Deviation , 2006 .

[11]  Jifeng Chu,et al.  ROTATION NUMBERS AND LYAPUNOV STABILITY OF ELLIPTIC PERIODIC SOLUTIONS , 2008 .

[12]  On the Number of Solutions to Semilinear Boundary Value Problems , 2004 .

[13]  A. M. Li︠a︡punov Problème général de la stabilité du mouvement , 1949 .

[14]  Jürgen Moser,et al.  Lectures on Celestial Mechanics , 1971 .

[15]  D. Hinton,et al.  Some disconjugacy criteria for differential equations with oscillatory coefficients , 2005 .

[16]  Tang Ying Periodic Solutions of a Class of Nonlinear Functional Differential Equations and Global Attractivity , 2006 .

[17]  W. Reid A generalized Liapunov inequality , 1973 .

[18]  W. Reid Interrelations between a trace formula and Liapunov type inequalities , 1977 .

[19]  Anton Zettl,et al.  Sturm-Liouville theory , 2005 .

[20]  C. M. Place,et al.  Ordinary Differential Equations , 1982 .

[21]  D. Kraft Nonlinear system analysis by direct collocation , 1987 .

[22]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[23]  Anton ZETTLAbstra DIFFERENTIABLE DEPENDENCE OF EIGENVALUES OF OPERATORS , 2007 .

[24]  Meirong Zhang,et al.  Continuity in weak topology and extremal problems of eigenvalues of the $p$-Laplacian , 2011 .

[25]  Optimal Conditions for Maximum and Antimaximum Principles of the Periodic Solution Problem , 2010 .

[26]  A. Vatsala,et al.  Green's function for n-n boundary value problem and an analogue of Hartman's result , 1975 .

[27]  Weigu Li,et al.  A Lyapunov-type stability criterion using ^{} norms , 2002 .

[28]  Qingkai Kong,et al.  Eigenvalues of Regular Sturm-Liouville Problems , 1996 .

[29]  Meirong Zhang From ODE to DDE , 2009 .

[30]  M. G. Krein,et al.  The Basic Propositions of the Theory of λ-Zones of Stability of a Canonical System of Linear Differential Equations with Periodic Coefficients , 1983 .

[31]  Ağacık Zafer,et al.  Stability criteria for linear periodic impulsive Hamiltonian systems , 2007 .

[32]  William T. Reid A matrix Liapunov inequality , 1970 .

[33]  Meirong Zhang Certain classes of potentials for p ‐Laplacian to be non‐degenerate , 2005 .

[34]  U. Ascher,et al.  3. Theory of Ordinary Differential Equations , 1995 .

[35]  A. Liapounoff,et al.  Problème général de la stabilité du mouvement , 1907 .

[36]  Levitan,et al.  Sturm―Liouville and Dirac Operators , 1990 .