Parameter estimation using Simulated Annealing for S-system models of biochemical networks

MOTIVATION High-throughput technologies now allow the acquisition of biological data, such as comprehensive biochemical time-courses at unprecedented rates. These temporal profiles carry topological and kinetic information regarding the biochemical network from which they were drawn. Retrieving this information will require systematic application of both experimental and computational methods. RESULTS S-systems are non-linear mathematical approximative models based on the power-law formalism. They provide a general framework for the simulation of integrated biological systems exhibiting complex dynamics, such as genetic circuits, signal transduction and metabolic networks. We describe how the heuristic optimization technique simulated annealing (SA) can be effectively used for estimating the parameters of S-systems from time-course biochemical data. We demonstrate our methods using three artificial networks designed to simulate different network topologies and behavior. We then end with an application to a real biochemical network by creating a working model for the cadBA system in Escherichia coli. AVAILABILITY The source code written in C++ is available at http://www.engg.upd.edu.ph/~naval/bioinformcode.html. All the necessary programs including the required compiler are described in a document archived with the source code. SUPPLEMENTARY INFORMATION Supplementary material is available at Bioinformatics online.

[1]  A Sorribas,et al.  Mathematical models of purine metabolism in man. , 1998, Mathematical biosciences.

[2]  E. O. Voit,et al.  Biochemical systems analysis of genome-wide expression data , 2000, Bioinform..

[3]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[4]  Masaru Tomita,et al.  Pathway Finding from Given Time-Courses Using Genetic Algorithm , 2001 .

[5]  Eberhard O. Voit,et al.  Hierarchical Monte Carlo modeling with S-distributions: Concepts and illustrative analysis of mercury contamination in king mackerel , 1995 .

[6]  Masaru Tomita,et al.  Dynamic modeling of genetic networks using genetic algorithm and S-system , 2003, Bioinform..

[7]  R. Goodacre,et al.  Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis , 2003, Springer US.

[8]  Jonas S. Almeida,et al.  Decoupling dynamical systems for pathway identification from metabolic profiles , 2004, Bioinform..

[9]  Christoph Küper Charakterisierung der transkriptionellen Aktivierung des cadBA-Operons durch den Transmembranregulator CadC aus Escherichia coli , 2006 .

[10]  A Sorribas,et al.  Validation and steady-state analysis of a power-law model of purine metabolism in man. , 1997, The Biochemical journal.

[11]  Eberhard O. Voit,et al.  Flux-based estimation of parameters in S-systems , 1996 .

[12]  M. Savageau Biochemical systems analysis. III. Dynamic solutions using a power-law approximation , 1970 .

[13]  Eberhard O Voit,et al.  Theoretical Biology and Medical Modelling , 2022 .

[14]  Christopher Gerner,et al.  Concomitant Determination of Absolute Values of Cellular Protein Amounts, Synthesis Rates, and Turnover Rates by Quantitative Proteome Profiling* , 2002, Molecular & Cellular Proteomics.

[15]  Takanori Ueda,et al.  Efficient Numerical Optimization Technique Based on Real-Coded Genetic Algorithm , 2001 .

[16]  Ana Rute Neves,et al.  Is the Glycolytic Flux in Lactococcus lactisPrimarily Controlled by the Redox Charge? , 2002, The Journal of Biological Chemistry.

[17]  Kirsten Jung,et al.  CadC-Mediated Activation of the cadBA Promoter in Escherichia coli , 2006, Journal of Molecular Microbiology and Biotechnology.

[18]  M. Neely,et al.  Kinetics of expression of the Escherichia coli cad operon as a function of pH and lysine , 1996, Journal of bacteriology.

[19]  E O Voit,et al.  Symmetries of S-systems. , 1992, Mathematical biosciences.

[20]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[21]  Shuhei Kimura,et al.  Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm , 2005, Bioinform..

[22]  A. Neves,et al.  Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by 13C NMR. , 2002, The Journal of biological chemistry.

[23]  G. Bennett,et al.  Construction of lac fusions to the inducible arginine‐and lysine decarboxylase genes of Escherichia coli K12 , 1989, Molecular microbiology.

[24]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.