Designing Interpretable Fuzzy Systems

[1]  F. Herrera,et al.  Genetic learning of fuzzy rule‐based classification systems cooperating with fuzzy reasoning methods , 1998 .

[2]  Hisao Ishibuchi,et al.  Deep Takagi–Sugeno–Kang Fuzzy Classifier With Shared Linguistic Fuzzy Rules , 2018, IEEE Transactions on Fuzzy Systems.

[3]  Lucien Duckstein,et al.  Fuzzy Rule-Based Modeling with Applications to Geophysical, Biological and Engineering Systems , 1995 .

[4]  George C. Mouzouris,et al.  Nonsingleton fuzzy logic systems: theory and application , 1997, IEEE Trans. Fuzzy Syst..

[5]  Joos Vandewalle,et al.  Constructing fuzzy models with linguistic integrity from numerical data-AFRELI algorithm , 2000, IEEE Trans. Fuzzy Syst..

[6]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[7]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[8]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[9]  Takeshi Furuhashi,et al.  Fuzzy modeling using genetic algorithms with fuzzy entropy as conciseness measure , 2001, Inf. Sci..

[10]  Andri Riid,et al.  Identification of transparent, compact, accurate and reliable linguistic fuzzy models , 2011, Inf. Sci..

[11]  W. Pedrycz,et al.  An introduction to fuzzy sets : analysis and design , 1998 .

[12]  Luis Magdalena,et al.  Interpretability Constraints and Criteria for Fuzzy Systems , 2021 .

[13]  Yaochu Jin,et al.  Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement , 2000, IEEE Trans. Fuzzy Syst..

[14]  Francisco Herrera,et al.  COR: a methodology to improve ad hoc data-driven linguistic rule learning methods by inducing cooperation among rules , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[15]  M. J. del Jesus,et al.  Genetic tuning of fuzzy rule-based systems integrating linguistic hedges , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[16]  Hisao Ishibuchi,et al.  Selecting fuzzy if-then rules for classification problems using genetic algorithms , 1995, IEEE Trans. Fuzzy Syst..

[17]  José M. Alonso,et al.  HILK++: an interpretability-guided fuzzy modeling methodology for learning readable and comprehensible fuzzy rule-based classifiers , 2011, Soft Comput..

[18]  Francisco Herrera,et al.  A proposal for improving the accuracy of linguistic modeling , 2000, IEEE Trans. Fuzzy Syst..

[19]  Hisao Ishibuchi,et al.  Rule weight specification in fuzzy rule-based classification systems , 2005, IEEE Transactions on Fuzzy Systems.

[20]  Francisco Herrera,et al.  Applicability of the fuzzy operators in the design of fuzzy logic controllers , 1997, Fuzzy Sets Syst..

[21]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[22]  J. Liska,et al.  Complete design of fuzzy logic systems using genetic algorithms , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[23]  Andreas Bastian,et al.  How to Handle the Flexibility of Linguistic Variables with Applications , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[24]  Jesús Alcalá-Fdez,et al.  A Fuzzy Association Rule-Based Classification Model for High-Dimensional Problems With Genetic Rule Selection and Lateral Tuning , 2011, IEEE Transactions on Fuzzy Systems.

[25]  Francisco Herrera,et al.  A learning process for fuzzy control rules using genetic algorithms , 1998, Fuzzy Sets Syst..

[26]  Hani Hagras,et al.  Multiobjective Evolutionary Optimization of Type-2 Fuzzy Rule-Based Systems for Financial Data Classification , 2017, IEEE Transactions on Fuzzy Systems.

[27]  Bin-Da Liu,et al.  Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[28]  Ahmad Lotfi,et al.  Interpretation preservation of adaptive fuzzy inference systems , 1996, Int. J. Approx. Reason..

[29]  Francisco Herrera,et al.  On the Usefulness of MOEAs for Getting Compact FRBSs Under Parameter Tuning and Rule Selection , 2008, Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases.

[30]  Jose Jesus Castro-Schez,et al.  Learning maximal structure rules in fuzzy logic for knowledge acquisition in expert systems , 1999, Fuzzy Sets Syst..

[31]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[32]  Tzung-Pei Hong,et al.  Effect of merging order on performance of fuzzy induction , 1999, Intell. Data Anal..

[33]  Magne Setnes,et al.  Compact and transparent fuzzy models and classifiers through iterative complexity reduction , 2001, IEEE Trans. Fuzzy Syst..

[34]  Krzysztof Cpałka,et al.  Improving Fuzzy Systems Interpretability by Appropriate Selection of Their Structure , 2017 .

[35]  José M. Alonso,et al.  Highly Interpretable Linguistic Knowledge Bases Optimization: Genetic Tuning versus Solis-Wetts. Looking for a good interpretability-accuracy trade-off , 2007, 2007 IEEE International Fuzzy Systems Conference.

[36]  Dr. Hans Hellendoorn,et al.  An Introduction to Fuzzy Control , 1996, Springer Berlin Heidelberg.

[37]  Torsten Bohlin Special issue on grey box modelling , 1995 .

[38]  W. Pedrycz,et al.  Construction of fuzzy models through clustering techniques , 1993 .

[39]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  José M. Alonso,et al.  Embedding HILK in a three-objective evolutionary algorithm with the aim of modeling highly interpretable fuzzy rule-based classifiers , 2010, 2010 4th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS).

[41]  Bernhard Sendhoff,et al.  On generating FC3 fuzzy rule systems from data using evolution strategies , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[42]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[43]  Maria J. Fuente,et al.  Multi-objective based Fuzzy Rule Based Systems (FRBSs) for trade-off improvement in accuracy and interpretability: A rule relevance point of view , 2017, Knowl. Based Syst..

[44]  Moshe Sipper,et al.  Fuzzy CoCo: a cooperative-coevolutionary approach to fuzzy modeling , 2001, IEEE Trans. Fuzzy Syst..

[45]  Luis Magdalena,et al.  HILK: A new methodology for designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism , 2008 .

[46]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1992, IEEE Trans. Syst. Man Cybern..

[47]  Liu Shi Model Construction Optimization for A Class of Fuzzy Models , 2001 .

[48]  Hisao Ishibuchi,et al.  A simple but powerful heuristic method for generating fuzzy rules from numerical data , 1997, Fuzzy Sets Syst..

[49]  Kenneth A. De Jong,et al.  Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.

[50]  P. Lindskog Fuzzy identification from a grey box modeling point of view , 1997 .

[51]  Hong Yan,et al.  Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition , 1996, Advances in Fuzzy Systems - Applications and Theory.

[52]  Héctor Pomares,et al.  Improving the accuracy while preserving the interpretability of fuzzy function approximators by means of multi-objective evolutionary algorithms , 2007, Int. J. Approx. Reason..

[53]  L. Zadeh A Fuzzy-Set-Theoretic Interpretation of Linguistic Hedges , 1972 .

[54]  José M. Alonso,et al.  Interpretability of Fuzzy Systems: Current Research Trends and Prospects , 2015, Handbook of Computational Intelligence.

[55]  Jun Zhou,et al.  Hierarchical fuzzy control , 1991 .

[56]  Chia-Feng Juang,et al.  Data-Driven Interval Type-2 Neural Fuzzy System With High Learning Accuracy and Improved Model Interpretability , 2013, IEEE Transactions on Cybernetics.

[57]  M. Gupta,et al.  Design of fuzzy logic controllers based on generalized T -operators , 1991 .

[58]  J. Casillas Interpretability issues in fuzzy modeling , 2003 .

[59]  José M. Alonso,et al.  HILK: A new methodology for designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism , 2008, Int. J. Intell. Syst..

[60]  Luis Magdalena,et al.  An Overview of Fuzzy Systems , 2021 .

[61]  Michela Antonelli,et al.  On the influence of feature selection in fuzzy rule-based regression model generation , 2016, Inf. Sci..

[62]  Juan Luis Castro,et al.  Balancing Interpretability against Accuracy in Fuzzy Modeling by Means of ACO , 2012, IPMU.

[63]  Antonio A. Márquez,et al.  A Mechanism to Improve the Interpretability of Linguistic Fuzzy Systems with Adaptive Defuzzification based on the use of a Multi-objective Evolutionary Algorithm , 2012, Int. J. Comput. Intell. Syst..

[64]  Francisco Herrera,et al.  A 2-tuple fuzzy linguistic representation model for computing with words , 2000, IEEE Trans. Fuzzy Syst..

[65]  Ch. Dujet,et al.  Force implication: a new approach to human reasoning , 1995 .

[66]  Humberto Bustince,et al.  CFM-BD: A Distributed Rule Induction Algorithm for Building Compact Fuzzy Models in Big Data Classification Problems , 2019, IEEE Transactions on Fuzzy Systems.

[67]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[68]  Magne Setnes,et al.  Orthogonal transforms for ordering and reduction of fuzzy rules , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[69]  Antonio Fiordaliso,et al.  A constrained Takagi-Sugeno fuzzy system that allows for better interpretation and analysis , 2001, Fuzzy Sets Syst..

[70]  Robert P. W. Duin,et al.  STATISTICAL PATTERN RECOGNITION , 2005 .

[71]  Antonín Dvorák,et al.  On linguistic approximation in the frame of fuzzy logic deduction , 1999, Soft Comput..

[72]  W. Pedrycz,et al.  Context adaptation in fuzzy processing and genetic algorithms , 1998 .

[73]  Antonio A. Márquez,et al.  Rule base and adaptive fuzzy operators cooperative learning of Mamdani fuzzy systems with multi-objective genetic algorithms , 2009, Evol. Intell..

[74]  J. Knapp,et al.  Refine and merge: generating small rule bases from training data , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[75]  M. Amparo Vila,et al.  A fuzziness measure for fuzzy numbers: Applications , 1998, Fuzzy Sets Syst..

[76]  Ebrahim Mamdani,et al.  Applications of fuzzy algorithms for control of a simple dynamic plant , 1974 .

[77]  Francisco Herrera,et al.  Linguistic modeling with weighted double-consequent fuzzy rules based on cooperative coevolution , 2003, EUSFLAT Conf..

[78]  José M. Alonso,et al.  Multi-objective design of highly interpretable fuzzy rule-based classifiers with semantic cointension , 2011, 2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS).

[79]  Ronald R. Yager,et al.  On the construction of hierarchical fuzzy systems models , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[80]  Witold Pedrycz,et al.  Fuzzy equalization in the construction of fuzzy sets , 2001, Fuzzy Sets Syst..

[81]  Michio Sugeno,et al.  A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..

[82]  Isao Hayashi,et al.  NN-driven fuzzy reasoning , 1991, Int. J. Approx. Reason..

[83]  Antonio González Muñoz,et al.  A Study About the Inclusion of Linguistic Hedges in a Fuzzy Rule Learning Algorithm , 1999, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[84]  Robert Babuška,et al.  A multi-objective evolutionary algorithm for fuzzy modeling , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[85]  Ulrich Bodenhofer,et al.  Towards an Axiomatic Treatment of "Interpretability" , 2000 .

[86]  Myriam Regattieri Delgado,et al.  Towards Interpretable General Type-2 Fuzzy Classifiers , 2009, 2009 Ninth International Conference on Intelligent Systems Design and Applications.

[87]  Anna Maria Fanelli,et al.  Design of Strong Fuzzy Partitions from Cuts , 2013, EUSFLAT Conf..

[88]  Beatrice Lazzerini,et al.  A Pareto-based multi-objective evolutionary approach to the identification of Mamdani fuzzy systems , 2007, Soft Comput..

[89]  C. Ibbs,et al.  The effects of membership function on fuzzy reasoning , 1991 .

[90]  Russell C. Eberhart,et al.  Implementation of evolutionary fuzzy systems , 1999, IEEE Trans. Fuzzy Syst..

[91]  Francisco Herrera,et al.  A Multiobjective Evolutionary Algorithm for Tuning Fuzzy Rule Based Systems with Measures for Preserving Interpretability , 2009, IFSA/EUSFLAT Conf..

[92]  Luis Magdalena,et al.  Semantic interpretability in hierarchical fuzzy systems: Creating semantically decouplable hierarchies , 2019, Inf. Sci..

[93]  Antonio González Muñoz,et al.  A fuzzy theory refinement algorithm , 1998, Int. J. Approx. Reason..

[94]  Christian Wagner,et al.  Interpretability indices for hierarchical fuzzy systems , 2017, 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[95]  Beatrice Lazzerini,et al.  Multi-objective evolutionary learning of granularity, membership function parameters and rules of Mamdani fuzzy systems , 2009, Evol. Intell..

[96]  Pietro Ducange,et al.  Optimizing Partition Granularity, Membership Function Parameters, and Rule Bases of Fuzzy Classifiers for Big Data by a Multi-objective Evolutionary Approach , 2019, Cognitive Computation.

[97]  Chuen-Chien Lee,et al.  Fuzzy logic in control systems: fuzzy logic controller. II , 1990, IEEE Trans. Syst. Man Cybern..

[98]  Cynthia Rudin,et al.  Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead , 2018, Nature Machine Intelligence.

[99]  Henk B. Verbruggen,et al.  Complexity reduction in fuzzy modeling , 1998 .

[100]  Uzay Kaymak,et al.  Similarity measures in fuzzy rule base simplification , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[101]  Antonio Fiordaliso Autostructuration of fuzzy systems by rules sensitivity analysis , 2001, Fuzzy Sets Syst..

[102]  Héctor Pomares,et al.  Self-organized fuzzy system generation from training examples , 2000, IEEE Trans. Fuzzy Syst..

[103]  Kuhu Pal,et al.  Handling of inconsistent rules with an extended model of fuzzy reasoning , 1999, J. Intell. Fuzzy Syst..

[104]  F. Herrera,et al.  Accuracy Improvements in Linguistic Fuzzy Modeling , 2003 .

[105]  Luis Magdalena,et al.  Revisiting Indexes for Assessing Interpretability of Fuzzy Systems , 2021 .

[106]  María José del Jesús,et al.  Some relationships between fuzzy and random set-based classifiers and models , 2002, Int. J. Approx. Reason..

[107]  Christian Wagner,et al.  Toward a Framework for Capturing Interpretability of Hierarchical Fuzzy Systems—A Participatory Design Approach , 2020, IEEE Transactions on Fuzzy Systems.

[108]  Francisco Herrera,et al.  Tuning fuzzy logic controllers by genetic algorithms , 1995, Int. J. Approx. Reason..

[109]  Francisco Herrera,et al.  Genetic Fuzzy Systems - Evolutionary Tuning and Learning of Fuzzy Knowledge Bases , 2002, Advances in Fuzzy Systems - Applications and Theory.

[110]  Anna Maria Fanelli,et al.  Interpretable fuzzy partitioning of classified data with variable granularity , 2019, Appl. Soft Comput..

[111]  Brigitte Charnomordic,et al.  Generating an interpretable family of fuzzy partitions from data , 2004, IEEE Transactions on Fuzzy Systems.

[112]  Luis Magdalena Do Hierarchical Fuzzy Systems Really Improve Interpretability? , 2018, IPMU.

[113]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[114]  Francisco Herrera,et al.  Linguistic modeling by hierarchical systems of linguistic rules , 2002, IEEE Trans. Fuzzy Syst..

[115]  Raúl Pérez,et al.  Completeness and consistency conditions for learning fuzzy rules , 1998, Fuzzy Sets Syst..

[116]  Derek A. Linkens,et al.  Input selection and partition validation for fuzzy modelling using neural network , 1999, Fuzzy Sets Syst..

[117]  José M. Alonso,et al.  A Conceptual Framework for Understanding a Fuzzy System , 2009, IFSA/EUSFLAT Conf..

[118]  Juan Luis Castro,et al.  Learning maximal structure fuzzy rules with exceptions , 2001, EUSFLAT Conf..

[119]  Witold Pedrycz Fuzzy Modelling: Paradigms and Practice , 2011 .

[120]  Francisco Herrera,et al.  Cooperative Coevolution for Learning Fuzzy Rule-Based Systems , 2001, Artificial Evolution.

[121]  Francisco Herrera,et al.  Building fuzzy graphs: Features and taxonomy of learning for non-grid-oriented fuzzy rule-based systems , 2001, J. Intell. Fuzzy Syst..

[122]  Luis Magdalena,et al.  Adapting the gain of an FLC with genetic algorithms , 1997, Int. J. Approx. Reason..

[123]  H. Hellendoorn,et al.  Defuzzification in Fuzzy Controllers , 1993, J. Intell. Fuzzy Syst..

[124]  Luis Magdalena,et al.  On the role of context in hierarchical fuzzy controllers , 2002, Int. J. Intell. Syst..

[125]  J. Yen,et al.  An SVD-based fuzzy model reduction strategy , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[126]  J. B. Kiszka,et al.  The influence of some fuzzy implication operators on the accuracy of a fuzzy model-part II , 1985 .

[127]  John Yen,et al.  Improving the interpretability of TSK fuzzy models by combining global learning and local learning , 1998, IEEE Trans. Fuzzy Syst..

[128]  Marwan Bikdash,et al.  A highly interpretable form of Sugeno inference systems , 1999, IEEE Trans. Fuzzy Syst..

[129]  Beatrice Lazzerini,et al.  Learning knowledge bases of multi-objective evolutionary fuzzy systems by simultaneously optimizing accuracy, complexity and partition integrity , 2011, Soft Comput..

[130]  Francisco Herrera,et al.  A genetic learning process for the scaling factors, granularity and contexts of the fuzzy rule-based system data base , 2001, Inf. Sci..

[131]  Rudolf Kruse,et al.  How the learning of rule weights affects the interpretability of fuzzy systems , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[132]  Xing Zong-Yi,et al.  Multi-objective fuzzy modeling using NSGA-II , 2008, 2008 IEEE Conference on Cybernetics and Intelligent Systems.

[133]  José Valente de Oliveira,et al.  Towards neuro-linguistic modeling: Constraints for optimization of membership functions , 1999, Fuzzy Sets Syst..

[134]  Luis Magdalena,et al.  A Fuzzy logic controller with learning through the evolution of its knowledge base , 1997, Int. J. Approx. Reason..

[135]  Charles L. Karr,et al.  Genetic algorithms for fuzzy controllers , 1991 .

[136]  Bernadette Bouchon-Meunier,et al.  Linguistic modifiers and imprecise categories , 1992, Int. J. Intell. Syst..

[137]  Francisco Herrera,et al.  A three-stage evolutionary process for learning descriptive and approximate fuzzy-logic-controller knowledge bases from examples , 1997, Int. J. Approx. Reason..

[138]  Hisao Ishibuchi,et al.  Three-objective genetics-based machine learning for linguistic rule extraction , 2001, Inf. Sci..