Deconvolution of 2D coincident Doppler broadening spectroscopy using the Richardson–Lucy algorithm

Abstract Coincident Doppler Broadening Spectroscopy (CDBS) measurements are popular in positron solid-state studies of materials. By utilizing the instrumental resolution function obtained from a gamma line close in energy to the 511 keV annihilation line, it is possible to significantly enhance the quality of the CDBS spectra using deconvolution algorithms. In this paper, we compare two algorithms, namely the Non-Negativity Least Squares (NNLS) regularized method and the Richardson–Lucy (RL) algorithm. The latter, which is based on the method of maximum likelihood, is found to give superior results to the regularized least-squares algorithm and with significantly less computer processing time.

[1]  K. B. Larson,et al.  Maximum-likelihood estimation applied to electron microscopic autoradiography , 1985 .

[2]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[3]  E. Bratsolis,et al.  A spatial regularization method preserving local photometry for Richardson-Lucy restoration , 2001 .

[4]  L. Feldman,et al.  Positron-annihilation momentum profiles in aluminum: Core contribution and the independent-particle model , 1977 .

[5]  T. Holmes,et al.  Acceleration of Maximum-Likelihood Image-Restoration for Fluorescence Microscopy and Other Noncoherent Imagery , 1991, Quantum Limited Imaging and Information Processing.

[6]  Edward S. Meinel,et al.  Origins of linear and nonlinear recursive restoration algorithms , 1986 .

[7]  T J Holmes,et al.  Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[8]  Robert J. Hanisch,et al.  The restoration of HST images and spectra - II , 2015 .

[9]  Lynn,et al.  Increased Elemental Specificity of Positron Annihilation Spectra. , 1996, Physical review letters.

[10]  Deconvolution of Doppler-broadened positron annihilation lineshapes by the generalised least-squares method , 1995 .

[11]  M. Miller,et al.  An evaluation of maximum likelihood reconstruction for SPECT. , 1990, IEEE transactions on medical imaging.

[12]  Richard M. Leahy,et al.  Fast MLE for SPECT using an intermediate polar representation and a stopping criterion , 1988 .

[13]  S. Fung,et al.  Optimized Coincidence Doppler Broadening Spectroscopy Using Deconvolution Algorithms , 2004 .

[14]  Measurement of Electron Momentum by Positron Annihilation , 1955 .

[15]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[16]  Claude Aime,et al.  Application of the Richardson-Lucy algorithm to the deconvolution of two-fold probability density functions , 1993 .

[17]  D. Agard,et al.  Fluorescence microscopy in three dimensions. , 1989, Methods in cell biology.

[18]  Michael K. Ng,et al.  Deconvolution of positron annihilation coincidence Doppler broadening spectra using an iterative projected Newton method with non-negativity constraints , 2003 .

[19]  D. Biggs,et al.  Conjugate gradient acceleration of maximum-likelihood image restoration , 1995 .

[20]  Deepak Khosla,et al.  Increased depth of field and stereo pairs of fluorescence micrographs via inverse filtering and maximum‐likelihood estimation , 1991 .

[21]  F. Courbin,et al.  Deconvolution with Correct Sampling , 1997, astro-ph/9704059.

[22]  Deconvolution of doppler broadened spectra of positron annihilation photons , 1975 .

[23]  D S Biggs,et al.  Acceleration of iterative image restoration algorithms. , 1997, Applied optics.

[24]  D. Bonaccini ESO/OSA topical meeting on astronomy with adaptive optics - present results and future programs : European Southern Observatory, Garching bei München, Germany September 7-11, 1998 Venue: Allgau Stern-Hotel, Southofen : proceedings , 1999 .

[25]  T J Holmes,et al.  Richardson-Lucy/maximum likelihood image restoration algorithm for fluorescence microscopy: further testing. , 1989, Applied optics.

[26]  T. Chang,et al.  EFFECT OF THE ENERGY-LOSS PROCESS ON THE ANNIHILATION OF ORTHOPOSITRONIUM IN SILICA AEROGEL , 1987 .

[27]  K. L. Chan,et al.  Deconvoluting Double Doppler Spectra , 2001 .

[28]  S. Matsui Precise radiation energy and core electron contribution of positron annihilation in Al studied with two Ge(Li) detectors , 1992 .

[29]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[30]  D. A. Fish,et al.  Blind deconvolution by means of the Richardson-Lucy algorithm. , 1995 .

[31]  Linda Kaufman,et al.  Implementing and Accelerating the EM Algorithm for Positron Emission Tomography , 1987, IEEE Transactions on Medical Imaging.

[32]  Mohammad Faisal,et al.  Implementation of a modified Richardson-Lucy method for image restoration on a massively parallel computer to compensate for space-variant point spread of a charge-coupled-device camera , 1995 .

[33]  K. Lynn,et al.  A two-dimensional Doppler broadened technique in positron annihilation , 1978 .