Distribution of Energy Spectra, Reynolds Stresses, Turbulence Production, and Dissipation in a Tidally Driven Bottom Boundary Layer

Abstract Seven sets of 2D particle image velocimetry data obtained in the bottom boundary layer of the coastal ocean along the South Carolina and Georgia coast [at the South Atlantic Bight Synoptic Offshore Observational Network (SABSOON) site] are examined, covering the accelerating and decelerating phases of a single tidal cycle at several heights above the seabed. Additional datasets from a previous deployment are also included in the analysis. The mean velocity profiles are logarithmic, and the vertical distribution of Reynolds stresses normalized by the square of the free stream velocity collapse well for data obtained at the same elevation but at different phases of the tidal cycle. The magnitudes of 〈u′u′〉, 〈w′w′〉, and −〈u′w′〉 decrease with height above bottom in the 25–160-cm elevation range and are consistent with the magnitudes and trends observed in laboratory turbulent boundary layers. If a constant stress layer exists, it is located below 25-cm elevation. Two methods for estimating dissipatio...

[1]  F. Clauser The Structure of Turbulent Shear Flow , 1957, Nature.

[2]  W. Crawford,et al.  Bottom Stress Estimates from Vertical Dissipation Rate Profiles on the Continental Shelf , 1988 .

[3]  K. Sreenivasan On the universality of the Kolmogorov constant , 1995 .

[4]  T. Gross,et al.  Bottom boundary layer spectral dissipation estimates in the presence of wave motions , 1994 .

[5]  D. G. Hazen,et al.  Seabed Stresses in Combined Wave and Steady Flow Conditions on the Nova Scotia Continental Shelf: Field Measurements and Predictions , 1988 .

[6]  Arthur R. M. Nowell,et al.  Spectral Scaling in a Tidal Boundary Layer , 1985 .

[7]  H. L. Grant The large eddies of turbulent motion , 1958, Journal of Fluid Mechanics.

[8]  W. Shaw,et al.  Budgets of turbulent kinetic energy and scalar variance in the continental shelf bottom boundary layer , 2001 .

[9]  O. Madsen,et al.  The continental-shelf bottom boundary layer , 1986 .

[10]  J. Westerweel Fundamentals of digital particle image velocimetry , 1997 .

[11]  H. Schlichting Boundary Layer Theory , 1955 .

[12]  F. Champagne The fine-scale structure of the turbulent velocity field , 1978, Journal of Fluid Mechanics.

[13]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[14]  C. Meneveau,et al.  On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet , 1994, Journal of Fluid Mechanics.

[15]  S. Lentz Sensitivity of the Inner-Shelf Circulation to the Form of the Eddy Viscosity Profile , 1995 .

[16]  J. Trowbridge ON A TECHNIQUE FOR MEASUREMENT OF TURBULENT SHEAR STRESS IN THE PRESENCE OF SURFACE WAVES , 1998 .

[17]  Z. Warhaft,et al.  On the small scale structure of simple shear flow , 1998 .

[18]  M. Parlange,et al.  PIV Measurements in the Atmospheric Boundary Layer within and above a Mature Corn Canopy. Part I: Statistics and Energy Flux , 2007 .

[19]  A. Gargett,et al.  Local isotropy and the decay of turbulence in a stratified fluid , 1984, Journal of Fluid Mechanics.

[20]  J. Katz,et al.  Turbulence Characteristics and Dissipation Estimates in the Coastal Ocean Bottom Boundary Layer from PIV Data , 2001 .

[21]  Z. She,et al.  On the universal form of energy spectra in fully developed turbulence , 1993 .

[22]  Peter Bradshaw,et al.  The turbulence structure of equilibrium boundary layers , 1967, Journal of Fluid Mechanics.

[23]  H. L. Grant,et al.  Turbulence spectra from a tidal channel , 1962, Journal of Fluid Mechanics.

[24]  Markus Raffel,et al.  Particle Image Velocimetry: A Practical Guide , 2002 .

[25]  P. Spalart Direct simulation of a turbulent boundary layer up to Rθ = 1410 , 1988, Journal of Fluid Mechanics.

[26]  Gregory Falkovich,et al.  Bottleneck phenomenon in developed turbulence , 1994 .

[27]  A. Hussain,et al.  The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments , 1972, Journal of Fluid Mechanics.

[28]  Thomas B. Sanford,et al.  Turbulent properties in a homogeneous tidal bottom boundary layer , 1999 .

[29]  D. Aubrey,et al.  Velocity observations above a rippled bed using laser Doppler velocimetry , 1992 .

[30]  J. Foucaut,et al.  PIV optimization for the study of turbulent flow using spectral analysis , 2004 .

[31]  W. Shaw,et al.  The Direct Estimation of Near-Bottom Turbulent Fluxes in the Presence of Energetic Wave Motions , 2001 .

[32]  P. Atsavapranee,et al.  PIV measurements in the bottom boundary layer of the coastal ocean , 2002 .

[33]  Joseph Katz,et al.  Five techniques for increasing the speed and accuracy of PIV interrogation , 2001 .

[34]  M. Raupach,et al.  Spectral scaling in a high reynolds number laboratory boundary layer , 1993 .

[35]  S. Glenn,et al.  Bottom Stress Estimates and their Prediction on the Northern California Continental Shelf during CODE-1: The Importance of Wave-Current Interaction , 1985 .

[36]  Joseph Katz,et al.  MEASUREMENTS OF THE FLOW STRUCTURE AND TURBULENCE WITHIN A SHIP BOW WAVE , 1999 .

[37]  Carl A. Friehe,et al.  Flux Measurements, Flux Estimation Techniques, and Fine-Scale Turbulence Measurements in the Unstable Surface Layer Over Land. , 1977 .

[38]  A. Gargett Evolution of scalar spectra with the decay of turbulence in a stratified fluid , 1985, Journal of Fluid Mechanics.

[39]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[40]  Paul A. Durbin,et al.  Local Anisotropy in Strained Turbulence at High Reynolds Numbers , 1991 .

[41]  J. Katz,et al.  The effect of waves on subgrid-scale stresses, dissipation and model coefficients in the coastal ocean bottom boundary layer , 2007, Journal of Fluid Mechanics.

[42]  Luca Bertuccioli,et al.  A Submersible Particle Image Velocimetry System for Turbulence Measurements in the Bottom Boundary Layer , 1999 .

[43]  Seyed G. Saddoughi,et al.  Local isotropy in turbulent boundary layers at high Reynolds number , 1994, Journal of Fluid Mechanics.

[44]  Jacques Nihoul,et al.  The Turbulent Ocean , 1980 .

[45]  J. Katz,et al.  On the Structure of Turbulence in the Bottom Boundary Layer of the Coastal Ocean , 2005 .

[46]  Z. C. Liu,et al.  Distortion compensation for generalized stereoscopic particle image velocimetry , 1997 .

[47]  Hidden conservation laws in hydrodynamics: energy and dissipation rate fluctuation spectra in strong turbulence , 1993 .