Semantic Cut Elimination in the Intuitionistic Sequent Calculus

Cut elimination is a central result of the proof theory. This paper proposes a new approach for proving the theorem for Gentzen's intuitionistic sequent calculus LJ, that relies on completeness of the cut-free calculus with respect to Kripke Models. The proof defines a general framework to extend the cut elimination result to other intuitionistic deduction systems, in particular to deduction modulo provided the rewrite system verifies some properties. We also give an example of rewrite system for which cut elimination holds but that doesn't enjoys proof normalization.

[1]  James Lipton,et al.  Completeness and Cut-elimination in the Intuitionistic Theory of Types , 2005, J. Log. Comput..

[2]  Gilles Dowek,et al.  Proof normalization modulo , 1998, Journal of Symbolic Logic.

[3]  Mitsuhiro Okada,et al.  A uniform semantic proof for cut-elimination and completeness of various first and higher order logics , 2002, Theor. Comput. Sci..

[4]  Claude Kirchner,et al.  Theorem Proving Modulo , 2003, Journal of Automated Reasoning.

[5]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[6]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[7]  Peter B. Andrews Resolution in type theory , 1971, Journal of Symbolic Logic.

[8]  A. Troelstra,et al.  Constructivism in Mathematics: An Introduction , 1988 .

[9]  Dag Prawitz Hauptsatz for Higher Order Logic , 1968, J. Symb. Log..

[10]  Harald Ganzinger,et al.  Associative-Commutative Superposition , 1994, CTRS.

[11]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[12]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[13]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[14]  Jürgen Stuber A Model-Based Completeness Proof of Extended Narrowing and Resolution , 2001, IJCAR.

[15]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[16]  Satoko Titani A Proof of the Cut-Elimination Theorem in Simple Type Theory , 1973, J. Symb. Log..

[17]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .