A Chebyshev Collocation Method for Stiff Initial Value Problems and Its Stability

The Chebyshev collocation method in [21] to solve stiff initial-value problems is generalized by using arbitrary degrees of interpolation polynomials and arbitrary collocation points. The convergence of this generalized Chebyshev collocation method is shown to be independent of the chosen collocation points. It is observed how the stability region does depend on collocation points. In particular, A-stability is shown by taking the mid points of nodes as collocation points.

[1]  Jeff Cash,et al.  On the integration of stiff systems of O.D.E.s using extended backward differentiation formulae , 1980 .

[2]  Christoph Fredebeul,et al.  A-BDF: A Generalization of the Backward Differentiation Formulae , 1998 .

[3]  Abdul Khader Error Control Policy for Initial Value Problems with Discontinuities and Delays , 2008 .

[4]  Jeff R. Cash,et al.  An MEBDF code for stiff initial value problems , 1992, TOMS.

[5]  G. Wanner,et al.  Runge-Kutta methods: some historical notes , 1996 .

[6]  Mustafa Bayram,et al.  On the numerical solution of stiff systems , 2005, Appl. Math. Comput..

[7]  Higinio Ramos,et al.  A family of A-stable Runge–Kutta collocation methods of higher order for initial-value problems , 2007 .

[8]  E. Hairer,et al.  Stiff differential equations solved by Radau methods , 1999 .

[9]  Higinio Ramos,et al.  A non-standard explicit integration scheme for initial-value problems , 2007, Appl. Math. Comput..

[10]  Jorge Álvarez,et al.  An improved class of generalized Runge-Kutta methods for stiff problems. Part I: The scalar case , 2002, Appl. Math. Comput..

[11]  C F Curtiss,et al.  Integration of Stiff Equations. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[13]  H. De Meyer,et al.  Exponentially fitted variable two-step BDF algorithm for first order ODEs☆ , 2003 .

[14]  Higinio Ramos,et al.  A fourth-order Runge-Kutta method based on BDF-type Chebyshev approximations , 2007 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  G. Dahlquist A special stability problem for linear multistep methods , 1963 .

[17]  J. Martín-Vaquero,et al.  Exponential fitting BDF-Runge-Kutta algorithms , 2008, Comput. Phys. Commun..

[18]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[19]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[20]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[21]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[22]  Jorge Álvarez,et al.  An improved class of generalized Runge-Kutta methods for stiff problems. Part II: The separated system case , 2004, Appl. Math. Comput..

[23]  Marek M. Stabrowski An efficient algorithm for solving stiff ordinary differential equations , 1997, Simul. Pract. Theory.

[24]  John C. Butcher,et al.  Integration processes based on Radau quadrature formulas , 1964 .

[25]  Ali Hassan Mohd Murid,et al.  Explicit methods in solving stiff ordinary differential equations , 2004, Int. J. Comput. Math..

[26]  Higinio Ramos,et al.  An almost L‐stable BDF‐type method for the numerical solution of stiff ODEs arising from the method of lines , 2007 .

[27]  Jianlin Xia,et al.  Two low accuracy methods for stiff systems , 2001, Appl. Math. Comput..