Intrinsic flame‐retardant urea formaldehyde/graphene nanocomposite foam: Structure and reinforcing mechanism

[1]  Jiahua Zhu,et al.  A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods , 2018, Advanced Composites and Hybrid Materials.

[2]  Zhanhu Guo,et al.  Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology , 2018 .

[3]  L. Ye,et al.  Intercalation structure and toughening mechanism of graphene/urea‐formaldehyde nanocomposites prepared via in situ polymerization , 2018 .

[4]  Guangxian Li,et al.  Intercalation Structure and Enhanced Thermal Oxidative Stability of Polyamide 6/Graphene Nanocomposites Prepared through in Situ Polymerization , 2017 .

[5]  Xutong Yang,et al.  Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities , 2017 .

[6]  Zhiyu Huang,et al.  Synthesis and characterization of water-sensitive core-shell type microspheres for water shut-off in the oil field , 2017, Russian Journal of Applied Chemistry.

[7]  L. Ye,et al.  A Novel Elastic Urea–Melamine–Formaldehyde Foam: Structure and Properties , 2016 .

[8]  Bai Xue,et al.  Sound Absorption Properties of Microporous Poly(vinyl formal) Foams Prepared by a Two-Step Acetalization Method , 2016 .

[9]  Lin Chen,et al.  Effect of multi-walled carbon nanotubes on mechanical, thermal and electrical properties of phenolic foam via in-situ polymerization , 2016 .

[10]  Lin Chen,et al.  Enhanced mechanical properties, thermal stability of phenolic-formaldehyde foam/silica nanocomposites via in situ polymerization , 2015 .

[11]  L. Ye,et al.  Structure and properties of urea-formaldehyde resin/polyurethane blend prepared via in-situ polymerization , 2015 .

[12]  Yong Huang,et al.  Graphene Oxide: A Versatile Agent for Polyimide Foams with Improved Foaming Capability and Enhanced Flexibility , 2015 .

[13]  Yang Chen,et al.  Effect of hard segments on the thermal and mechanical properties of water blown semi-rigid polyurethane foams , 2015, Journal of Polymer Research.

[14]  H. Garmabi,et al.  Lightweight high-density polyethylene/carbonaceous nanosheets microcellular foams with improved electrical conductivity and mechanical properties , 2015, Journal of Materials Science.

[15]  Qiuyu Zhang,et al.  High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites , 2015 .

[16]  Zhihua Yang,et al.  Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties. , 2014, Nanoscale.

[17]  Qiuyu Zhang,et al.  Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites , 2014 .

[18]  Qiuyu Zhang,et al.  Surface functionalization of HMPBO fibers with MSA/KH550/GlycidylEthyl POSS and improved interfacial adhesion , 2014 .

[19]  Zhuang Xie,et al.  Three‐Dimensional Compressible and Stretchable Conductive Composites , 2014, Advanced materials.

[20]  M. Rabinal,et al.  Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite , 2014 .

[21]  D. Wang,et al.  Effect of polyethylene glycol on the mechanical property, microstructure, thermal stability, and flame resistance of phenol–urea–formaldehyde foams , 2014, Journal of Materials Science.

[22]  Z. Sun,et al.  Improvement in mechanical and thermal properties of phenolic foam reinforced with multiwalled carbon nanotubes , 2013 .

[23]  Lei Song,et al.  The effect of graphene presence in flame retarded epoxy resin matrix on the mechanical and flammability properties of glass fiber-reinforced composites , 2013 .

[24]  A. Y. Sham,et al.  A review of fundamental properties and applications of polymer–graphene hybrid materials , 2013 .

[25]  G. Shi,et al.  Graphene Materials for Electrochemical Capacitors. , 2013, The journal of physical chemistry letters.

[26]  Jianfeng Zhang,et al.  Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. , 2013, ACS applied materials & interfaces.

[27]  Hui-Ming Cheng,et al.  Lightweight and Flexible Graphene Foam Composites for High‐Performance Electromagnetic Interference Shielding , 2013, Advanced materials.

[28]  M. Jawaid,et al.  Natural fiber reinforced poly(vinyl chloride) composites: A review , 2013 .

[29]  Jong-Hyun Ahn,et al.  Graphene Films for Flexible Organic and Energy Storage Devices. , 2013, The journal of physical chemistry letters.

[30]  H. Pang,et al.  Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite , 2012 .

[31]  Junwei Gu,et al.  Flame-Retardant, Thermal, Mechanical and Dielectric Properties of Structural Non-Halogenated Epoxy Resin Composites , 2012 .

[32]  X. Ji,et al.  Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes , 2012, Polymer International.

[33]  João Ferra,et al.  Alternative to latent catalysts for curing UF resins used in the production of low formaldehyde emission wood-based panels , 2012 .

[34]  Hua Zhang,et al.  Graphene-based composites. , 2012, Chemical Society reviews.

[35]  V. Sankaranarayanan,et al.  Functionalized Graphene–PVDF Foam Composites for EMI Shielding† , 2011 .

[36]  Hanxiong Huang,et al.  Preparation of microcellular polypropylene/polystyrene blend foams with tunable cell structure , 2011 .

[37]  Zhong-Zhen Yu,et al.  Tough graphene-polymer microcellular foams for electromagnetic interference shielding. , 2011, ACS applied materials & interfaces.

[38]  B. S. Manjunath,et al.  Halogen-free flame-retardant rigid polyurethane foams: Effect of alumina trihydrate and triphenylphosphate on the properties of polyurethane foams , 2010 .

[39]  Vijay Kumar Thakur,et al.  Synthesis and characterization of short Grewia optiva fiber‐based polymer composites , 2010 .

[40]  B. S. Manjunath,et al.  Effect of Expandable Graphite on the Properties of Intumescent Flame-Retardant Polyurethane Foam , 2008 .

[41]  A. Pizzi,et al.  Colloidal aggregation of aminoplastic polycondensation resins: Urea–formaldehyde versus melamine–formaldehyde and melamine–urea–formaldehyde resins , 2006 .

[42]  A. Maaroufi,et al.  Nonlinear electrical conductivity of tin-filled urea-formaldehyde-cellulose composites , 2005 .

[43]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[44]  D. Braun,et al.  Studies on the Morphological Characterization of Urea-Formaldehyde-Foams , 1985 .