暂无分享,去创建一个
[1] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[2] A. Ochoa,et al. Vine Estimation of Distribution Algorithms , 2012 .
[3] A. Azzalini. A note on the estimation of a distribution function and quantiles by a kernel method , 1981 .
[4] D. Anderson,et al. Algorithms for minimization without derivatives , 1974 .
[5] Gianluca Fusai,et al. Implementing Models in Quantitative Finance: Methods and Cases , 2008 .
[6] C. Genest,et al. Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .
[7] Roger M. Cooke,et al. Sampling algorithms for generating joint uniform distributions using the vine-copula method , 2007, Comput. Stat. Data Anal..
[8] H. Mühlenbein,et al. From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.
[9] H. Akaike. A new look at the statistical model identification , 1974 .
[10] B. Rémillard,et al. Test of independence and randomness based on the empirical copula process , 2004 .
[11] Geert Molenberghs,et al. Transformation of non positive semidefinite correlation matrices , 1993 .
[12] Marta Soto,et al. copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas , 2012, ArXiv.
[13] T. Bedford,et al. Vines: A new graphical model for dependent random variables , 2002 .
[14] Jing J. Liang,et al. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .
[15] Jianchao Zeng,et al. Estimation of Distribution Algorithm based on copula theory , 2009, 2009 IEEE Congress on Evolutionary Computation.
[16] José Ignacio Hidalgo,et al. Bivariate empirical and n-variate Archimedean copulas in estimation of distribution algorithms , 2010, IEEE Congress on Evolutionary Computation.
[17] J. A. Lozano,et al. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .
[18] B. Rémillard,et al. Goodness-of-fit tests for copulas: A review and a power study , 2006 .
[19] Heinz Mühlenbein,et al. FDA -A Scalable Evolutionary Algorithm for the Optimization of Additively Decomposed Functions , 1999, Evolutionary Computation.
[20] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[21] H. Joe. Multivariate models and dependence concepts , 1998 .
[22] H. Joe. Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .
[23] Jianchao Zeng,et al. Estimation of distribution algorithm based on archimedean copulas , 2009, GEC '09.
[24] Ying Gao,et al. Multivariate Estimation of Distribution Algorithm with Laplace Transform Archimedean Copula , 2009, 2009 International Conference on Information Engineering and Computer Science.
[25] Daniel J. Rosenkrantz,et al. An analysis of several heuristics for the traveling salesman problem , 2013, Fundamental Problems in Computing.
[26] Diana Carrera,et al. Vine Estimation of Distribution Algorithms with Application to Molecular Docking , 2012 .
[27] A. McNeil,et al. The t Copula and Related Copulas , 2005 .
[28] Dirk Thierens,et al. Numerical Optimization with Real-Valued Estimation-of-Distribution Algorithms , 2006, Scalable Optimization via Probabilistic Modeling.
[29] Roger M. Cooke,et al. Monte Carlo simulation of vine dependent random variables for applications in uncertainty analysis , 2001 .
[30] F. Matemática. Algoritmos con estimación de distribuciones basados en cópulas y vines , 2011 .
[31] Bernard W. Silverman,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[32] Pedro Larrañaga,et al. Optimization in Continuous Domains by Learning and Simulation of Gaussian Networks , 2000 .
[33] Collin Carbno,et al. Uncertainty Analysis With High Dimensional Dependence Modelling , 2007, Technometrics.
[34] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[35] A. Frigessi,et al. Pair-copula constructions of multiple dependence , 2009 .
[36] E. Brechmann,et al. Truncated and simplified regular vines and their applications , 2010 .
[37] Arturo Hernández Aguirre,et al. Dependence trees with copula selection for continuous estimation of distribution algorithms , 2011, GECCO '11.
[38] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[39] J. Zeng,et al. Estimation of distribution algorithm based on nested Archimedean copulas constructed with Lévy subordinators , 2010, 2010 IEEE 11th International Conference on Computer-Aided Industrial Design & Conceptual Design 1.
[40] Roger M. Cooke,et al. Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.
[41] Martin Pelikan,et al. An introduction and survey of estimation of distribution algorithms , 2011, Swarm Evol. Comput..
[42] David E. Goldberg,et al. Hierarchical Bayesian Optimization Algorithm , 2006, Scalable Optimization via Probabilistic Modeling.
[43] Arturo Hernández Aguirre,et al. Using Copulas in Estimation of Distribution Algorithms , 2009, MICAI.
[44] Petros Koumoutsakos,et al. Learning Probability Distributions in Continuous Evolutionary Algorithms - a Comparative Review , 2004, Nat. Comput..
[45] R. Nelsen. An Introduction to Copulas , 1998 .
[46] C. D. Kemp,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[48] S. Baluja,et al. Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space , 1997 .
[49] Pedro Larrañaga,et al. Experimental Results in Function Optimization with EDAs in Continuous Domain , 2002, Estimation of Distribution Algorithms.
[50] Dean Fantazzini,et al. Three-Stage Semi-Parametric Estimation of T-Copulas: Asymptotics, Finite-Sample Properties and Computational Aspects , 2009, Comput. Stat. Data Anal..
[51] Martin Pelikan,et al. Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms , 2010, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).
[52] Arturo Hernández Aguirre,et al. D-vine EDA: a new estimation of distribution algorithm based on regular vines , 2010, GECCO '10.