Modeling with Copulas and Vines in Estimation of Distribution Algorithms

The aim of this work is studying the use of copulas and vines in numerical optimization with Estimation of Distribution Algorithms (EDAs). Two EDAs built around the multivariate product and normal copulas, and other two based on pair-copula decomposition of vine models are studied. We analyze empirically the effect of both marginal distributions and dependence structure in order to show that both aspects play a crucial role in the success of the optimization process. The results show that the use of copulas and vines opens new opportunities to a more appropriate modeling of search distributions in EDAs.

[1]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[2]  A. Ochoa,et al.  Vine Estimation of Distribution Algorithms , 2012 .

[3]  A. Azzalini A note on the estimation of a distribution function and quantiles by a kernel method , 1981 .

[4]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[5]  Gianluca Fusai,et al.  Implementing Models in Quantitative Finance: Methods and Cases , 2008 .

[6]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[7]  Roger M. Cooke,et al.  Sampling algorithms for generating joint uniform distributions using the vine-copula method , 2007, Comput. Stat. Data Anal..

[8]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[9]  H. Akaike A new look at the statistical model identification , 1974 .

[10]  B. Rémillard,et al.  Test of independence and randomness based on the empirical copula process , 2004 .

[11]  Geert Molenberghs,et al.  Transformation of non positive semidefinite correlation matrices , 1993 .

[12]  Marta Soto,et al.  copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas , 2012, ArXiv.

[13]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[14]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[15]  Jianchao Zeng,et al.  Estimation of Distribution Algorithm based on copula theory , 2009, 2009 IEEE Congress on Evolutionary Computation.

[16]  José Ignacio Hidalgo,et al.  Bivariate empirical and n-variate Archimedean copulas in estimation of distribution algorithms , 2010, IEEE Congress on Evolutionary Computation.

[17]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[18]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[19]  Heinz Mühlenbein,et al.  FDA -A Scalable Evolutionary Algorithm for the Optimization of Additively Decomposed Functions , 1999, Evolutionary Computation.

[20]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[21]  H. Joe Multivariate models and dependence concepts , 1998 .

[22]  H. Joe Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .

[23]  Jianchao Zeng,et al.  Estimation of distribution algorithm based on archimedean copulas , 2009, GEC '09.

[24]  Ying Gao,et al.  Multivariate Estimation of Distribution Algorithm with Laplace Transform Archimedean Copula , 2009, 2009 International Conference on Information Engineering and Computer Science.

[25]  Daniel J. Rosenkrantz,et al.  An analysis of several heuristics for the traveling salesman problem , 2013, Fundamental Problems in Computing.

[26]  Diana Carrera,et al.  Vine Estimation of Distribution Algorithms with Application to Molecular Docking , 2012 .

[27]  A. McNeil,et al.  The t Copula and Related Copulas , 2005 .

[28]  Dirk Thierens,et al.  Numerical Optimization with Real-Valued Estimation-of-Distribution Algorithms , 2006, Scalable Optimization via Probabilistic Modeling.

[29]  Roger M. Cooke,et al.  Monte Carlo simulation of vine dependent random variables for applications in uncertainty analysis , 2001 .

[30]  F. Matemática Algoritmos con estimación de distribuciones basados en cópulas y vines , 2011 .

[31]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[32]  Pedro Larrañaga,et al.  Optimization in Continuous Domains by Learning and Simulation of Gaussian Networks , 2000 .

[33]  Collin Carbno,et al.  Uncertainty Analysis With High Dimensional Dependence Modelling , 2007, Technometrics.

[34]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[35]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[36]  E. Brechmann,et al.  Truncated and simplified regular vines and their applications , 2010 .

[37]  Arturo Hernández Aguirre,et al.  Dependence trees with copula selection for continuous estimation of distribution algorithms , 2011, GECCO '11.

[38]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[39]  J. Zeng,et al.  Estimation of distribution algorithm based on nested Archimedean copulas constructed with Lévy subordinators , 2010, 2010 IEEE 11th International Conference on Computer-Aided Industrial Design & Conceptual Design 1.

[40]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[41]  Martin Pelikan,et al.  An introduction and survey of estimation of distribution algorithms , 2011, Swarm Evol. Comput..

[42]  David E. Goldberg,et al.  Hierarchical Bayesian Optimization Algorithm , 2006, Scalable Optimization via Probabilistic Modeling.

[43]  Arturo Hernández Aguirre,et al.  Using Copulas in Estimation of Distribution Algorithms , 2009, MICAI.

[44]  Petros Koumoutsakos,et al.  Learning Probability Distributions in Continuous Evolutionary Algorithms - a Comparative Review , 2004, Nat. Comput..

[45]  R. Nelsen An Introduction to Copulas , 1998 .

[46]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[48]  S. Baluja,et al.  Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space , 1997 .

[49]  Pedro Larrañaga,et al.  Experimental Results in Function Optimization with EDAs in Continuous Domain , 2002, Estimation of Distribution Algorithms.

[50]  Dean Fantazzini,et al.  Three-Stage Semi-Parametric Estimation of T-Copulas: Asymptotics, Finite-Sample Properties and Computational Aspects , 2009, Comput. Stat. Data Anal..

[51]  Martin Pelikan,et al.  Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms , 2010, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).

[52]  Arturo Hernández Aguirre,et al.  D-vine EDA: a new estimation of distribution algorithm based on regular vines , 2010, GECCO '10.