A New Framework for Optimal Path Planning of Rectangular Robots Using a Weighted $L_p$ Norm

This letter introduces a new framework for modeling the optimal path planning problem of rectangular robots. Typically constraints for the safe, obstacle-avoiding path involve a set of inequalities expressed using logical <sc> or</sc> operations, which makes the problem difficult to solve using existing optimization algorithms. Inspired by the geometry of the unit sphere of the weighted <inline-formula><tex-math notation="LaTeX">$L_p$</tex-math> </inline-formula> norm, the authors find exact and approximate constraints for safe configurations using only logical <sc>and</sc> operations. The proposed method does not require integer programming nor computation of a Minkowski sum in the configuration space. In particular, the authors analyze two different cases of obstacle geometry: circular obstacles and rectangular obstacles. Using the weighted <inline-formula><tex-math notation="LaTeX">$L_p$</tex-math> </inline-formula> norm requires six inequalities to represent the exact constraints for collision avoidance of circular obstacles using <sc>and</sc> operations, and eight inequalities for rectangular obstacles. Four shortest path planning examples are analyzed to validate the effectiveness of the proposed method.

[1]  R. Bhattacharya,et al.  OPTRAGEN: A MATLAB Toolbox for Optimal Trajectory Generation , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[2]  Hamdy A. Taha,et al.  Operations research: an introduction / Hamdy A. Taha , 1982 .

[3]  G. Chirikjian,et al.  Closed-form characterization of the Minkowski sum and difference of two ellipsoids , 2015 .

[4]  J. How,et al.  Mixed-integer programming for control , 2005, Proceedings of the 2005, American Control Conference, 2005..

[5]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[6]  B. Moor,et al.  Mixed integer programming for multi-vehicle path planning , 2001, 2001 European Control Conference (ECC).

[7]  G. Swaminathan Robot Motion Planning , 2006 .

[8]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  Dan Halperin,et al.  Exact and efficient construction of Minkowski sums of convex polyhedra with applications , 2006, Comput. Aided Des..

[10]  Gregory S. Chirikjian,et al.  Path Planning Based on Closed-Form Characterization of Collision-Free Configuration-Spaces for Ellipsoidal Bodies, Obstacles, and Environments , 2016 .

[11]  Jean-Daniel Boissonnat,et al.  Polygon Placement Under Translation and Rotation , 1988, RAIRO Theor. Informatics Appl..

[12]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[13]  Arch W. Naylor,et al.  Linear Operator Theory in Engineering and Science , 1971 .

[14]  Hamdy A. Taha,et al.  Operations Research: An Introduction, 8/e , 2008 .

[15]  Zhaodan Kong,et al.  A Survey of Motion Planning Algorithms from the Perspective of Autonomous UAV Guidance , 2010, J. Intell. Robotic Syst..

[16]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[17]  WächterAndreas,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006 .

[18]  Robin Deits,et al.  Efficient mixed-integer planning for UAVs in cluttered environments , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.