n‐Doping of Organic Electronic Materials using Air‐Stable Organometallics

Air-stable dimers of sandwich compounds including rhodocene and (pentamethylcyclopentadienyl)(arene)ruthenium and iron derivatives can be used for n-doping electron-transport materials with electron affinities as small as 2.8 eV. A p-i-n homojunction diode based on copper phthalocyanine and using rhodocene dimer as n-dopant shows a rectification ratio of greater than 10(6) at 4 V.

[1]  D. Astruc,et al.  Syntheses, characterizations, and stereoelectronic stabilization of organometallic electron reservoirs: the 19-electron d7 redox catalysts .eta.5-C5R5Fe-.eta.6-C6R'6 , 1981 .

[2]  Toshio Matsumoto,et al.  Bright organic electroluminescent devices having a metal-doped electron-injecting layer , 1998 .

[3]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[4]  P. Maitlis,et al.  Electrochemical generation of 19- and 20-electron rhodocenium complexes and their properties , 1993 .

[5]  E. Fischer,et al.  Über Aromatenkomplexe von Metallen, XCI. Über monomeres und dimeres Bis-hexamethylbenzol-rhenium , 1966 .

[6]  Y. Qi,et al.  Use of a high electron-affinity molybdenum dithiolene complex to p-dope hole-transport layers. , 2009, Journal of the American Chemical Society.

[7]  Wei Zhao,et al.  Decamethylcobaltocene as an efficient n-dopant in organic electronic materials and devices , 2008 .

[8]  E. Fischer,et al.  Über aromatenkomplexe von metallen : LXXXVIII. Über monomeres und dimeres dicyclopentadienyl-rhodium und dicyclopentadienyliridium und über ein neues verfahren zur darstellung ungeladener metall-aromaten-komplexe , 1966 .

[9]  S. Peregudova,et al.  Reduction of ruthenium arenecyclopentadienyl complexes reactions induced by electron transfer , 1997 .

[10]  K. Walzer,et al.  Highly efficient organic devices based on electrically doped transport layers. , 2007, Chemical reviews.

[11]  Z. Bao,et al.  Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors. , 2010, Journal of the American Chemical Society.

[12]  Jean-Luc Brédas,et al.  Photoelectron spectroscopic study of the electronic band structure of polyfluorene and fluorene-arylamine copolymers at interfaces , 2007 .

[13]  Eung-Gun Kim,et al.  Molecular n‐Type Doping of 1,4,5,8‐Naphthalene Tetracarboxylic Dianhydride by Pyronin B Studied Using Direct and Inverse Photoelectron Spectroscopies , 2006 .

[14]  John E Anthony,et al.  Functionalized acenes and heteroacenes for organic electronics. , 2006, Chemical reviews.

[15]  N. A. Ustynyuk,et al.  Reduction of iridocenium salts [Ir(η5-C5Me5)(η5-L)]+ (L = C5H5, C5Me5, C9H7); ligand-to-ligand dimerisation induced by electron transfer , 1997 .

[16]  Stephen R. Forrest,et al.  Lithium doping of semiconducting organic charge transport materials , 2001 .

[17]  V. Petráková,et al.  Interaction of electroneutral benzenecyclopentadienyliron with halogen derivatives , 1977 .

[18]  Incorporation of cobaltocene as an n-dopant in organic molecular films , 2007 .

[19]  N. Murr,et al.  Electrochemical reduction pathways of the rhodocenium ion. Dimerization and reduction of rhodocene , 1979 .

[20]  Xianjie Liu,et al.  Leuco Crystal Violet as a Dopant for n-Doping of Organic Thin Films of Fullerene C60 , 2004 .

[21]  Karl Leo,et al.  Pyronin B as a donor for n-type doping of organic thin films , 2003 .

[22]  C. M. Elliott,et al.  Organic homojunction diodes with a high built-in potential: interpretation of the current-voltage characteristics by a generalized Einstein relation. , 2005, Physical review letters.