Postprocessing Mixed Finite Element Methods For Solving Cahn–Hilliard Equation: Methods and Error Analysis

A postprocessing technique for mixed finite element methods for the Cahn–Hilliard equation is developed and analyzed. Once the mixed finite element approximations have been computed at a fixed time on a coarser space, the approximations are postprocessed by solving two decoupled Poisson equations in an enriched finite element space (either on a finer grid or a higher-order space) for which many fast Poisson solvers can be applied. The nonlinear iteration is only applied to a much smaller size problem and the computational cost using Newton and direct solvers is negligible compared with the cost of the linear problem. The analysis presented here shows that this technique remains the optimal rate of convergence for both the concentration and the chemical potential approximations. The corresponding error estimate obtained in our paper, especially the negative norm error estimates, are non-trivial and different with the existing results in the literatures.

[1]  Edriss S. Titi,et al.  An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations , 1999, Math. Comput..

[2]  Charles M. Elliott,et al.  Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation , 1992 .

[3]  Yinnian He Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations , 2015 .

[4]  Cheng Wang,et al.  Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..

[5]  Krishna Garikipati,et al.  A discontinuous Galerkin method for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[6]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .

[7]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[8]  Bosco Garc,et al.  Postprocessing the Galerkin Method: The Finite-Element Case , 1999 .

[9]  Yinnian He,et al.  On large time-stepping methods for the Cahn--Hilliard equation , 2007 .

[10]  S. M. Choo,et al.  A discontinuous Galerkin method for the Cahn-Hilliard equation , 2005 .

[11]  Javier de Frutos,et al.  A Spectral Element Method for the Navier-Stokes Equations with Improved Accuracy , 2000, SIAM J. Numer. Anal..

[12]  Wang Ming,et al.  Nonconforming tetrahedral finite elements for fourth order elliptic equations , 2007, Math. Comput..

[13]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[14]  Yunxian Liu,et al.  A class of stable spectral methods for the Cahn-Hilliard equation , 2009, J. Comput. Phys..

[15]  Jinchao Xu,et al.  Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .

[16]  Yubin Yan Postprocessing the Finite Element Method for Semilinear Parabolic Problems , 2006, SIAM J. Numer. Anal..

[17]  Javier de Frutos,et al.  Static Two-Grid Mixed Finite-Element Approximations to the Navier-Stokes Equations , 2010, Journal of Scientific Computing.

[18]  Andreas Prohl,et al.  Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits , 2003, Math. Comput..

[19]  Yunqing Huang,et al.  An Efficient Two-Grid Scheme for the Cahn-Hilliard Equation , 2015 .

[20]  Javier de Frutos,et al.  A postprocess based improvement of the spectral element method , 2000 .

[21]  Edriss S. Titi,et al.  Postprocessing the Galerkin Method: a Novel Approach to Approximate Inertial Manifolds , 1998 .

[22]  Jie Shen,et al.  Efficient energy stable schemes with spectral discretization in space for anisotropic , 2013 .

[23]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[24]  Xiaobing Feng,et al.  Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition , 2007, Math. Comput..

[25]  Javier de Frutos,et al.  Postprocessing the Linear Finite Element Method , 2002, SIAM J. Numer. Anal..

[26]  Javier de Frutos,et al.  A postprocessed Galerkin method with Chebyshev or Legendre polynomials , 2000, Numerische Mathematik.

[27]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[28]  Ming Wang,et al.  A nonconforming finite element method for the Cahn-Hilliard equation , 2010, J. Comput. Phys..

[29]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[30]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Cahn-Hilliard type equations , 2007, J. Comput. Phys..

[31]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[32]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .

[33]  S. M. Wise,et al.  Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations , 2010, J. Sci. Comput..

[34]  Charles M. Elliott,et al.  On the Cahn-Hilliard equation , 1986 .

[35]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[36]  Blanca Ayuso de Dios,et al.  The Postprocessed Mixed Finite-Element Method for the Navier-Stokes Equations , 2005, SIAM J. Numer. Anal..

[37]  Javier de Frutos,et al.  The Postprocessed Mixed Finite-Element Method for the Navier-Stokes Equations: Refined Error Bounds , 2007, SIAM J. Numer. Anal..

[38]  Junseok Kim Phase-Field Models for Multi-Component Fluid Flows , 2012 .

[39]  Steven M. Wise,et al.  A MIXED DISCONTINUOUS GALERKIN, CONVEX SPLITTING SCHEME FOR A MODIFIED CAHN-HILLIARD EQUATION AND AN EFFICIENT NONLINEAR MULTIGRID SOLVER , 2013 .

[40]  Endre Süli,et al.  Discontinuous Galerkin Finite Element Approximation of the Cahn-Hilliard Equation with Convection , 2009, SIAM J. Numer. Anal..

[41]  Andreas Prohl,et al.  Error analysis of a mixed finite element method for the Cahn-Hilliard equation , 2004, Numerische Mathematik.

[42]  A. H. Schatz,et al.  On the Quasi-Optimality in $L_\infty$ of the $\overset{\circ}{H}^1$-Projection into Finite Element Spaces* , 1982 .

[43]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[44]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[45]  Javier de Frutos,et al.  Nonlinear convection–diffusion problems: fully discrete approximations and a posteriori error estimates , 2011 .

[46]  Javier de Frutos,et al.  Improving the Accuracy of the Mini-Element Approximation to Navier-Stokes equations , 2007 .

[47]  Javier de Frutos,et al.  Postprocessing Finite-Element Methods for the Navier-Stokes Equations: The Fully Discrete Case , 2008, SIAM J. Numer. Anal..