Postprocessing Mixed Finite Element Methods For Solving Cahn–Hilliard Equation: Methods and Error Analysis
暂无分享,去创建一个
Long Chen | Wansheng Wang | Jie Zhou | Long Chen | Jie Zhou | Wansheng Wang
[1] Edriss S. Titi,et al. An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations , 1999, Math. Comput..
[2] Charles M. Elliott,et al. Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation , 1992 .
[3] Yinnian He. Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations , 2015 .
[4] Cheng Wang,et al. Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..
[5] Krishna Garikipati,et al. A discontinuous Galerkin method for the Cahn-Hilliard equation , 2006, J. Comput. Phys..
[6] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .
[7] Cheng Wang,et al. An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..
[8] Bosco Garc,et al. Postprocessing the Galerkin Method: The Finite-Element Case , 1999 .
[9] Yinnian He,et al. On large time-stepping methods for the Cahn--Hilliard equation , 2007 .
[10] S. M. Choo,et al. A discontinuous Galerkin method for the Cahn-Hilliard equation , 2005 .
[11] Javier de Frutos,et al. A Spectral Element Method for the Navier-Stokes Equations with Improved Accuracy , 2000, SIAM J. Numer. Anal..
[12] Wang Ming,et al. Nonconforming tetrahedral finite elements for fourth order elliptic equations , 2007, Math. Comput..
[13] Jinchao Xu,et al. A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..
[14] Yunxian Liu,et al. A class of stable spectral methods for the Cahn-Hilliard equation , 2009, J. Comput. Phys..
[15] Jinchao Xu,et al. Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .
[16] Yubin Yan. Postprocessing the Finite Element Method for Semilinear Parabolic Problems , 2006, SIAM J. Numer. Anal..
[17] Javier de Frutos,et al. Static Two-Grid Mixed Finite-Element Approximations to the Navier-Stokes Equations , 2010, Journal of Scientific Computing.
[18] Andreas Prohl,et al. Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits , 2003, Math. Comput..
[19] Yunqing Huang,et al. An Efficient Two-Grid Scheme for the Cahn-Hilliard Equation , 2015 .
[20] Javier de Frutos,et al. A postprocess based improvement of the spectral element method , 2000 .
[21] Edriss S. Titi,et al. Postprocessing the Galerkin Method: a Novel Approach to Approximate Inertial Manifolds , 1998 .
[22] Jie Shen,et al. Efficient energy stable schemes with spectral discretization in space for anisotropic , 2013 .
[23] D. J. Eyre. Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .
[24] Xiaobing Feng,et al. Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition , 2007, Math. Comput..
[25] Javier de Frutos,et al. Postprocessing the Linear Finite Element Method , 2002, SIAM J. Numer. Anal..
[26] Javier de Frutos,et al. A postprocessed Galerkin method with Chebyshev or Legendre polynomials , 2000, Numerische Mathematik.
[27] Jinchao Xu. Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .
[28] Ming Wang,et al. A nonconforming finite element method for the Cahn-Hilliard equation , 2010, J. Comput. Phys..
[29] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[30] Yan Xu,et al. Local discontinuous Galerkin methods for the Cahn-Hilliard type equations , 2007, J. Comput. Phys..
[31] J. Lowengrub,et al. Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .
[32] Charles M. Elliott,et al. A second order splitting method for the Cahn-Hilliard equation , 1989 .
[33] S. M. Wise,et al. Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations , 2010, J. Sci. Comput..
[34] Charles M. Elliott,et al. On the Cahn-Hilliard equation , 1986 .
[35] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .
[36] Blanca Ayuso de Dios,et al. The Postprocessed Mixed Finite-Element Method for the Navier-Stokes Equations , 2005, SIAM J. Numer. Anal..
[37] Javier de Frutos,et al. The Postprocessed Mixed Finite-Element Method for the Navier-Stokes Equations: Refined Error Bounds , 2007, SIAM J. Numer. Anal..
[38] Junseok Kim. Phase-Field Models for Multi-Component Fluid Flows , 2012 .
[39] Steven M. Wise,et al. A MIXED DISCONTINUOUS GALERKIN, CONVEX SPLITTING SCHEME FOR A MODIFIED CAHN-HILLIARD EQUATION AND AN EFFICIENT NONLINEAR MULTIGRID SOLVER , 2013 .
[40] Endre Süli,et al. Discontinuous Galerkin Finite Element Approximation of the Cahn-Hilliard Equation with Convection , 2009, SIAM J. Numer. Anal..
[41] Andreas Prohl,et al. Error analysis of a mixed finite element method for the Cahn-Hilliard equation , 2004, Numerische Mathematik.
[42] A. H. Schatz,et al. On the Quasi-Optimality in $L_\infty$ of the $\overset{\circ}{H}^1$-Projection into Finite Element Spaces* , 1982 .
[43] R. Rannacher,et al. Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .
[44] Xiaofeng Yang,et al. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .
[45] Javier de Frutos,et al. Nonlinear convection–diffusion problems: fully discrete approximations and a posteriori error estimates , 2011 .
[46] Javier de Frutos,et al. Improving the Accuracy of the Mini-Element Approximation to Navier-Stokes equations , 2007 .
[47] Javier de Frutos,et al. Postprocessing Finite-Element Methods for the Navier-Stokes Equations: The Fully Discrete Case , 2008, SIAM J. Numer. Anal..