Empirical correction to density functional theory for van der Waals interactions

An empirical method has been designed to account for the van der Waals interactions in practical molecular calculations with density functional theory. For each atom pair separated at a distance R, the method adds to the density functional electronic structure calculations an additional attraction energy EvdW=−fd(R)C6R−6, where fd(R) is the damping function which equals to one at large value of R and zero at small value of R. The coefficients C6 for pair interactions between hydrogen, carbon, nitrogen, and oxygen atoms have been developed in this work by a least-square fitting to the molecular C6 coefficients obtained from the dipole oscillator strength distribution method by Meath and co-workers. Two forms of the damping functions have been studied, with one dropping to zero at short distances much faster than the other. Four density functionals have been examined: Becke’s three parameter hybrid functional with the Lee-Yang-Parr correlation functional, Becke’s 1988 exchange functional with the LYP correl...

[1]  Thomas A. Halgren,et al.  The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters , 1992 .

[2]  D. Herschbach,et al.  Combination Rules for van der Waals Force Constants , 1970 .

[3]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[4]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[5]  Robert G. Parr,et al.  Density Functional Theory of Electronic Structure , 1996 .

[6]  W. J. Meath,et al.  Pseudo-spectral dipole oscillator strength distributions for the normal alkanes through octane and the evaluation of some related dipole-dipole and triple-dipole dispersion interaction energy coefficients , 1980 .

[7]  Benny G. Johnson,et al.  The performance of a family of density functional methods , 1993 .

[8]  José M. Pérez-Jordá,et al.  A density-functional study of van der Waals forces: rare gas diatomics. , 1995 .

[9]  M Elstner,et al.  Quantum mechanics simulation of protein dynamics on long timescale , 2001, Proteins.

[10]  D. Langreth,et al.  Van Der Waals Interactions In Density Functional Theory , 2007 .

[11]  J. Šponer,et al.  Nature of Nucleic Acid−Base Stacking: Nonempirical ab Initio and Empirical Potential Characterization of 10 Stacked Base Dimers. Comparison of Stacked and H-Bonded Base Pairs , 1996 .

[12]  Ashcroft,et al.  Fluctuation attraction in condensed matter: A nonlocal functional approach. , 1991, Physical review. B, Condensed matter.

[13]  Jan Kroon,et al.  TRANSFERABLE AB INITIO INTERMOLECULAR POTENTIALS. 2. VALIDATION AND APPLICATION TO CRYSTAL STRUCTURE PREDICTION , 1999 .

[14]  Á. Pérez‐Jiménez,et al.  Density-functional study of van der Waals forces on rare-gas diatomics: Hartree–Fock exchange , 1999 .

[15]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[16]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[17]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[18]  A. Bondi van der Waals Volumes and Radii , 1964 .

[19]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[20]  Dmitrii E. Makarov,et al.  van der Waals Energies in Density Functional Theory , 1998 .

[21]  D. Margoliash,et al.  Pseudospectral dipole oscillator strength distributions and some related two body interaction coefficients for H, He, Li, N, O, H2, N2, O2, NO, N2O, H2O, NH3, and CH4 , 1978 .

[22]  Kenneth J. Miller,et al.  Additivity methods in molecular polarizability , 1990 .

[23]  J. Hermans,et al.  310 HELIX VERSUS ALPHA -HELIX : A MOLECULAR DYNAMICS STUDY OF CONFORMATIONAL PREFERENCES OF AIB AND ALANINE , 1994 .

[24]  Ashok Kumar,et al.  Pseudo-spectral dipole oscillator strengths and dipole-dipole and triple-dipole dispersion energy coefficients for HF, HCl, HBr, He, Ne, Ar, Kr and Xe , 1985 .

[25]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[26]  C. E. Brion,et al.  Valence shell absolute photoabsorption oscillator strengths, constrained dipole oscillator strength distributions, and dipole properties for CH3NH2, (CH3)2NH, and (CH3)3N , 1994 .

[27]  Young Kee Kang,et al.  Additivity of atomic static polarizabilities and dispersion coefficients , 1982 .

[28]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[29]  Giacinto Scoles,et al.  Intermolecular forces in simple systems , 1977 .

[30]  D. Woon Benchmark calculations with correlated molecular wave functions. V. The determination of accurate abinitio intermolecular potentials for He2, Ne2, and Ar2 , 1994 .

[31]  Giovanni Vignale,et al.  Electronic density functional theory : recent progress and new directions , 1998 .

[32]  John P. Perdew,et al.  Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation , 1999 .

[33]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[34]  T. Ziegler Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics , 1991 .

[35]  William J. Meath,et al.  Dipole oscillator strength properties and dispersion energies for acetylene and benzene , 1992 .

[36]  J. F. Ogilvie,et al.  Potential-energy functions of diatomic molecules of the noble gases I. Like nuclear species , 1992 .

[37]  J. Šponer,et al.  H-Bonded and Stacked DNA Base Pairs: Cytosine Dimer. An Ab Initio Second-Order Moeller-Plesset Study , 1995 .

[38]  J. N. Wilson On the London Potential Between Pairs of Rare‐Gas Atoms , 1965 .

[39]  Dennis R. Salahub,et al.  Gaussian density functional calculations on hydrogen-bonded systems , 1992 .

[40]  Jacques Weber,et al.  Comparative Study of Benzene···X (X = O2, N2, CO) Complexes Using Density Functional Theory: The Importance of an Accurate Exchange−Correlation Energy Density at High Reduced Density Gradients , 1997 .

[41]  J. Šponer,et al.  Nonplanar geometries of DNA bases. Ab initio second-order Moeller-Plesset study , 1994 .

[42]  John C. Slater,et al.  The Van Der Waals Forces in Gases , 1931 .

[43]  Gustavo E. Scuseria,et al.  Kinetic energy density dependent approximations to the exchange energy , 1999 .

[44]  Yingkai Zhang,et al.  Describing van der Waals interaction in diatomic molecules with generalized gradient approximations: The role of the exchange functional , 1997 .

[45]  K. Tang Upper Bounds for van der Waals Interactions of Two and Three Atoms , 1968 .

[46]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[47]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[48]  Mark R. Pederson,et al.  Application of the generalized-gradient approximation to rare-gas dimers , 1997 .

[49]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[50]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[51]  J. F. Ogilvie,et al.  Potential-energy functions of diatomic molecules of the noble gases , 1993 .

[52]  Marvin L. Cohen,et al.  Electronic structure of solids , 1984 .

[53]  Ashok Kumar,et al.  Isotropic dipole properties for acetone, acetaldehyde and formaldehyde , 1997 .

[54]  W. J. Meath,et al.  Dipole oscillator strength distributions, sums, and dispersion energy coefficients for CO and CO2☆ , 1982 .

[55]  J. Dobson Prospects for a van der Waals density functional , 1998 .

[56]  Axel D. Becke,et al.  Density-functional thermochemistry. I. The effect of the exchange-only gradient correction , 1992 .