Sampled-Data Design for Robust Control of a Single Qubit

This technical note presents a sampled-data approach to the robust control of a single qubit (quantum bit). The required robustness is defined using a sliding mode domain and the control law is designed offline and then utilized online with a single qubit having bounded uncertainties. Two classes of uncertainties are considered involving the system Hamiltonian and the coupling strength of the system-environment interaction. Four cases are analyzed in detail including without decoherence, with amplitude damping decoherence, phase damping decoherence and depolarizing decoherence. Sampling periods are specifically designed for these cases to guarantee the required robustness. Two sufficient conditions are presented for the design of a unitary control for the cases without decoherence and with amplitude damping decoherence. The proposed approach has potential applications in quantum error-correction and in constructing robust quantum gates.

[1]  L Frunzio,et al.  ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2005, Physical review letters.

[2]  V. I. Man'ko,et al.  Quantum control and the Strocchi map , 2003 .

[3]  Domenico D'Alessandro,et al.  Environment-mediated control of a quantum system. , 2006, Physical review letters.

[4]  Saverio Bolognani,et al.  Engineering Stable Discrete-Time Quantum Dynamics via a Canonical QR Decomposition , 2009, IEEE Transactions on Automatic Control.

[5]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[6]  Wei Cui,et al.  Optimal decoherence control in non-Markovian open dissipative quantum systems , 2008, 0910.5208.

[7]  Bassam Bamieh,et al.  Optimal Population Transfers in a Quantum System for Large Transfer Time , 2008, IEEE Transactions on Automatic Control.

[8]  M. L. Ladron de Guevara,et al.  Measurement-driven quantum evolution , 2006 .

[9]  Daniel A. Lidar,et al.  Stabilizing qubit coherence via tracking-control , 2005, Quantum Inf. Comput..

[10]  Zairong Xi,et al.  Combating dephasing decoherence by periodically performing tracking control and projective measurement , 2007 .

[11]  Mazyar Mirrahimi,et al.  Real-time quantum feedback prepares and stabilizes photon number states , 2011, Nature.

[12]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[13]  Mazyar Mirrahimi,et al.  Lyapunov control of bilinear Schrödinger equations , 2005, Autom..

[14]  Mazyar Mirrahimi,et al.  Stabilizing Feedback Controls for Quantum Systems , 2005, SIAM J. Control. Optim..

[15]  Bo Qi,et al.  Is measurement-based feedback still better for quantum control systems? , 2010, Syst. Control. Lett..

[16]  James Lam,et al.  Robust incoherent control of qubit systems via switching and optimisation , 2010, Int. J. Control.

[17]  Herschel Rabitz,et al.  Quantum control by von Neumann measurements , 2006 .

[18]  Matthew R. James,et al.  Direct and Indirect Couplings in Coherent Feedback Control of Linear Quantum Systems , 2010, IEEE Transactions on Automatic Control.

[19]  Lorenza Viola,et al.  Quantum Markovian Subsystems: Invariance, Attractivity, and Control , 2007, IEEE Transactions on Automatic Control.

[20]  Guofeng Zhang,et al.  LQG/H∞ control of linear quantum stochastic systems , 2015, 2015 34th Chinese Control Conference (CCC).

[21]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[22]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[23]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[24]  Matthew R. James,et al.  A Discrete Invitation to Quantum Filtering and Feedback Control , 2009, SIAM Rev..

[25]  Hidenori Kimura,et al.  Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems , 2003, IEEE Trans. Autom. Control..

[26]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[27]  C. D'Helon,et al.  Robust control of decoherence in realistic one-qubit quantum gates , 2002 .

[28]  Gerard J. Milburn,et al.  Controlling the decoherence of a ''meter'' via stroboscopic feedback , 1997 .

[29]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[30]  Hideo Mabuchi,et al.  Quantum feedback control and classical control theory , 1999, quant-ph/9912107.

[31]  Xiaoting Wang,et al.  Analysis of Lyapunov Method for Control of Quantum States , 2010, IEEE Transactions on Automatic Control.

[32]  Claudio Altafini,et al.  Feedback Stabilization of Isospectral Control Systems on Complex Flag Manifolds: Application to Quantum Ensembles , 2007, IEEE Transactions on Automatic Control.

[33]  Ian R. Petersen,et al.  Notes on sliding mode control of two-level quantum systems , 2012, Autom..

[34]  Sen Kuang,et al.  Lyapunov control methods of closed quantum systems , 2008, Autom..

[35]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .

[36]  Lorenza Viola,et al.  Robust dynamical decoupling of quantum systems with bounded controls. , 2003, Physical review letters.

[37]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[38]  Ian R. Petersen,et al.  Sampled-data LQG control for a class of linear quantum systems , 2012, 2012 American Control Conference (ACC).

[39]  Yuanlong Wang,et al.  Further results on sampled-data design for robust control of a single qubit , 2014, Int. J. Control.

[40]  Timothy F. Havel,et al.  Robust control of quantum information , 2003, quant-ph/0307062.

[41]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[42]  V. Utkin Variable structure systems with sliding modes , 1977 .

[43]  Kurt Jacobs,et al.  Feedback control using only quantum back-action , 2009, 0904.3745.

[44]  Jing Zhang,et al.  Maximal suppression of decoherence in Markovian quantum systems , 2005 .

[45]  Ian R. Petersen,et al.  Sampled-data control of two-level quantum systems based on sliding mode design , 2011, IEEE Conference on Decision and Control and European Control Conference.

[46]  Ian R. Petersen,et al.  Sampled-data design for robust decoherence control of a single qubit , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[47]  Daniel A. Lidar,et al.  Arbitrarily accurate dynamical control in open quantum systems. , 2009, Physical review letters.

[48]  D. D’Alessandro Introduction to Quantum Control and Dynamics , 2007 .

[49]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[50]  Daniel A. Lidar,et al.  Optimal dynamical decoherence control of a qubit. , 2008, Physical review letters.

[51]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[52]  Domenico D'Alessandro,et al.  Optimal control of two-level quantum systems , 2001, IEEE Trans. Autom. Control..

[53]  V. Belavkin THEORY OF THE CONTROL OF OBSERVABLE QUANTUM SYSTEMS , 2005 .

[54]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[55]  U. Boscain,et al.  Time minimal trajectories for a spin 1∕2 particle in a magnetic field , 2005, quant-ph/0512074.

[56]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[57]  Wineland,et al.  Quantum Zeno effect. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[58]  M. R. James,et al.  Risk-sensitive optimal control of quantum systems , 2004 .

[59]  Franco Nori,et al.  Control-free control: Manipulating a quantum system using only a limited set of measurements , 2010, 1011.4463.

[60]  Naoki Yamamoto,et al.  Quantum Risk-Sensitive Estimation and Robustness , 2007, IEEE Transactions on Automatic Control.

[61]  Daoyi Dong,et al.  Incoherent control of locally controllable quantum systems. , 2008, The Journal of chemical physics.

[62]  I. Petersen,et al.  Sliding mode control of quantum systems , 2009, 0911.0062.

[63]  Chunfeng Wu,et al.  Effects of uncertainties and errors on a Lyapunov control , 2010, 1010.2088.

[64]  Lorenza Viola,et al.  Analysis and synthesis of attractive quantum Markovian dynamics , 2008, Autom..

[65]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[66]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[67]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[68]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[69]  Jing Zhang,et al.  Protecting Coherence and Entanglement by Quantum Feedback Controls , 2010, IEEE Transactions on Automatic Control.

[70]  Ian R. Petersen,et al.  Sliding mode control of two-level quantum systems , 2010, Autom..

[71]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[72]  Jr-Shin Li,et al.  Ensemble Control of Bloch Equations , 2009, IEEE Transactions on Automatic Control.

[73]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.