Exact solution for the extensional flow of a viscoelastic filament

We solve the free boundary problem for the dynamics of a cylindrical, axisymmetric viscoelastic filament stretching in a gravity-driven extensional flow for the Upper Convected Maxwell and Oldroyd-B constitutive models. Assuming the axial stress in the filament has a spatial dependence provides the simplest coupling of viscoelastic effects to the motion of the filament, and yields a closed system of ODEs with an exact solution for the stretch rate and filament thickness satisfied by both constitutive models. This viscoelastic solution, which is a generalization of the exact solution for Newtonian filaments, converges to the Newtonian power-law scaling as $t \rightarrow \infty$. Based on the exact solution, we identify two regimes of dynamical behavior called the weakly- and strongly-viscoelastic limits. We compare the viscoelastic solution to measurements of the thinning filament that forms behind a falling drop for several semi-dilute (strongly-viscoelastic) polymer solutions. We find the exact solution correctly predicts the time-dependence of the filament diameter in all of the experiments. As $t \rightarrow \infty$, observations of the filament thickness follow the Newtonian scaling $1/\sqrt{t}$. The transition from viscoelastic to Newtonian scaling in the filament thickness is coupled to a stretch-to-coil transition of the polymer molecules.

[1]  Diane M. Henderson,et al.  The motion of a falling liquid filament , 2000 .

[2]  P. Wilmott,et al.  Slender axisymmetric fluid jets , 1993 .

[3]  R. Larson Constitutive equations for polymer melts and solutions , 1988 .

[4]  Diane M. Henderson,et al.  On the pinch-off of a pendant drop of viscous fluid , 1997 .

[5]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[6]  R. Schulkes,et al.  The evolution and bifurcation of a pendant drop , 1994, Journal of Fluid Mechanics.

[7]  T. Kowalewski,et al.  On the separation of droplets from a liquid jet , 1996 .

[8]  D. V. Boger,et al.  The effects of polymer concentration and molecular weight on the breakup of laminar capillary jets , 1998 .

[9]  E. Hinch Uncoiling a polymer molecule in a strong extensional flow , 1994 .

[10]  M. Renardy,et al.  A finite difference study of the stretching and break-up of filaments of polymer solutions , 1985 .

[11]  David O. Olagunju A 1-D theory for extensional deformation of a viscoelastic filament under exponential stretching , 1999 .

[12]  D. Bonn,et al.  Inhibition of the finite-time singularity during droplet fission of a polymeric fluid. , 2001, Physical review letters.

[13]  Jens Eggers,et al.  Theory of drop formation , 1995 .

[14]  F. T. Trouton,et al.  On the coefficient of viscous traction and its relation to that of viscosity , 1906 .

[15]  R. Shinnar,et al.  Breakup of a laminar capillary jet of a viscoelastic fluid , 1969, Journal of Fluid Mechanics.

[16]  J. Eggers,et al.  The beads-on-string structure of viscoelastic threads , 2003, Journal of Fluid Mechanics.

[17]  A. Keller,et al.  The extensibility of macromolecules in solution; A new focus for macromolecular science , 1985 .

[18]  D. Bousfield,et al.  Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments , 1986 .

[19]  G. Fuller,et al.  Birefringence and stress growth in uniaxial extension of polymer solutions , 2000 .

[20]  N. Hudson,et al.  The extensional properties of M1 obtained from the stretching of a filament by a falling pendant drop , 1990 .

[21]  D. Peregrine,et al.  The bifurcation of liquid bridges , 1990, Journal of Fluid Mechanics.

[22]  Scott D. Phillips,et al.  Computational and experimental analysis of dynamics of drop formation , 1999 .

[23]  Hsueh-Chia Chang,et al.  Iterated stretching of viscoelastic jets , 1999 .

[24]  G. Fuller,et al.  Extensional Viscosity Measurements for Low‐Viscosity Fluids , 1987 .

[25]  Daniel D. Joseph,et al.  Fluid Dynamics Of Viscoelastic Liquids , 1990 .

[26]  Willie E. Rochefort,et al.  Rheology of Xanthan Gum: Salt, Temperature, and Strain Effects in Oscillatory and Steady Shear Experiments , 1987 .

[27]  R. Gupta,et al.  Measurement of extensional viscosity of polymer solutions , 1991 .

[28]  E. Hinch,et al.  Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid , 1997 .

[29]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[30]  D. Weihs,et al.  Stability of a capillary jet with linearly increasing axial velocity (with application to shaped charges) , 1985, Journal of Fluid Mechanics.

[31]  Sidney R. Nagel,et al.  Breakdown of scaling in droplet fission at high Reynolds number , 1997 .

[32]  J. Eggers Nonlinear dynamics and breakup of free-surface flows , 1997 .

[33]  E. L. Ince Ordinary differential equations , 1927 .

[34]  Andrew Belmonte,et al.  Motion and shape of a viscoelastic drop falling through a viscous fluid , 2003, Journal of Fluid Mechanics.

[35]  D. Papageorgiou ON THE BREAKUP OF VISCOUS LIQUID THREADS , 1995 .

[36]  Michael Renardy,et al.  Mathematical Analysis of Viscoelastic Flows , 1987 .

[37]  L. Walker,et al.  Surface tension driven jet break up of strain-hardening polymer solutions , 2001 .

[38]  T. Dupont,et al.  Drop Formation in a One-Dimensional Approximation of the Navier-Stokes Equation , 1992, physics/0110081.

[39]  Andrew J. Bernoff,et al.  Self‐similar Asymptotics for Linear and Nonlinear Diffusion Equations , 1998 .

[40]  R. Keiller Extending filaments of an oldroyd fluid , 1992 .

[41]  Morton M. Denn,et al.  Mechanics of steady spinning of a viscoelastic liquid , 1975 .

[42]  Xiaoguang Zhang,et al.  An experimental study of dynamics of drop formation , 1995 .

[43]  S. Bechtel,et al.  Modeling and computation of the onset of failure in polymeric liquid filaments , 1995 .

[44]  Wendy W. Zhang,et al.  Similarity Solutions for Capillary Pinch-Off in Fluids of Differing Viscosity , 1999 .

[45]  D. Weihs,et al.  Influence of viscosity on the capillary instability of a stretching jet , 1987, Journal of Fluid Mechanics.

[46]  M. Renardy A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets , 1995 .

[47]  William W. Schultz,et al.  One-Dimensional Liquid Fibers , 1982 .

[48]  Gareth H. McKinley,et al.  Elasto-capillary thinning and breakup of model elastic liquids , 2001 .

[49]  M. Brenner,et al.  A Cascade of Structure in a Drop Falling from a Faucet , 1994, Science.