Model Selection and Semiparametric Inference for Bivariate Failure-Time Data

Abstract We propose model selection procedures for bivariate survival models for censored data generated by the Archimedean copula family. In route to constructing the selection methodology, we develop estimates of some time-dependent association measures, including estimates of the local and global Kendall's tau, local odds ratio, and other measures defined throughout the literature. We propose a goodness-of-fit-based model selection methodology as well as a graphical approach. We show that the proposed methods have desirable asymptotic properties and perform well in finite samples.

[1]  M. Wells,et al.  Density Estimation with Bivariate Censored Data , 1996 .

[2]  Martin T. Wells,et al.  Nonparametric estimation of successive duration times under dependent censoring , 1998 .

[3]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[4]  M. Laan Efficient estimation in the bivariate censoring model and repairing NPMLE , 1996 .

[5]  Ross L. Prentice,et al.  On assessing the strength of dependency between failure time variates , 1996 .

[6]  D. Clayton,et al.  Multivariate generalizations of the proportional hazards model , 1985 .

[7]  Sue Leurgans,et al.  Nonparametric Estimation of a Bivariate Survival Function in the Presence of Censoring , 1986 .

[8]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[9]  M. Lindeboom,et al.  Heterogeneity in Models for Bivariate Survival: the Importance of the Mixing Distribution , 1994 .

[10]  Myles Hollander,et al.  Nonparametric Tests of Independence for Censored Data with Application to Heart Transplant Studies , 1973 .

[11]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[12]  Richard D. Gill,et al.  A counting process approach to maximum likelihood estimation in frailty models , 1992 .

[13]  Joseph P. Romano A Bootstrap Revival of Some Nonparametric Distance Tests , 1988 .

[14]  Zhiliang Ying,et al.  A simple nonparametric estimator of the bivariate survival function under univariate censoring , 1993 .

[15]  B. Lin Nonparametric estimation of the gap time distributions for serial events with censored data , 1999 .

[16]  Michael Visser,et al.  Nonparametric estimation of the bivariate survival function with an application to vertically transmitted AIDS , 1996 .

[17]  Karen Bandeen-Roche,et al.  Modelling failure-time associations in data with multiple levels of clustering , 1996 .

[18]  Susan A. Murphy,et al.  Consistency in a Proportional Hazards Model Incorporating a Random Effect , 1994 .

[19]  E. Gumbel Bivariate Logistic Distributions , 1961 .

[20]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[21]  M. J. Frank On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .

[22]  Martin T. Wells,et al.  Nonparametric estimators of the bivariate survival function under simplified censoring conditions , 1997 .

[23]  C. Mcgilchrist,et al.  Regression with frailty in survival analysis. , 1991, Biometrics.

[24]  P. Hougaard A class of multivanate failure time distributions , 1986 .

[25]  D. Dabrowska Kaplan-Meier estimate on the plane: Weak convergence, LIL, and the bootstrap☆ , 1989 .

[26]  C. Genest Frank's family of bivariate distributions , 1987 .

[27]  R. Gill Non- and semi-parametric maximum likelihood estimators and the Von Mises method , 1986 .

[28]  Harry Joe,et al.  Parametric families of multivariate distributions with given margins , 1993 .

[29]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[30]  W. Aronow,et al.  Sustained Hemodynamic and Antianginal Effect of High Dose Oral Isosorbide Dinitrate , 1977, Circulation.

[31]  D. Oakes,et al.  Bivariate survival models induced by frailties , 1989 .

[32]  Thomas A. Louis,et al.  Time-Dependent Association Measures for Bivariate Survival Distributions , 1992 .

[33]  T. Louis,et al.  Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.

[34]  C. Genest,et al.  The Joy of Copulas: Bivariate Distributions with Uniform Marginals , 1986 .

[35]  D. Oakes,et al.  A concordance test for independence in the presence of censoring. , 1982, Biometrics.

[36]  M. J. Frank On the simultaneous associativity ofF(x, y) andx+y−F(x, y) , 1978 .

[37]  E. Gumbel Bivariate Exponential Distributions , 1960 .

[38]  M. J. Frank On the simultaneous associativity of F(x, y) and x+y-F(x, y). (Short Communication). , 1978 .

[39]  Dorota M. Dabrowska,et al.  Kaplan-Meier Estimate on the Plane , 1988 .

[40]  Jianwen Cai,et al.  Covariance and survivor function estimation using censored multivariate failure time data , 1992 .

[41]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[42]  Bruno Rémillard,et al.  On Kendall's Process , 1996 .

[43]  McGilchrist Ca,et al.  Regression with frailty in survival analysis. , 1991 .

[44]  Martin T. Wells,et al.  Estimation of Kendall's tau under censoring , 2000 .

[45]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .