Average Walsh Power Spectrum for Periodic Signals

A circular shift-invariant Walsh power spectrum for deterministic periodic sequences is defined. For a sequence with period N, the power spectrum is the average of the Walsh power spectra of all N possible distinct circular shifts. The Average Walsh Power Spectrum (AWPS) consists of (N/2) + 1 coefficients, each representing a distinct sequency. A fast transformation from the arithmetic autocorrelation function of a periodic sequence to its AWPS is presented.

[1]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Trans. Syst. Man Cybern..

[2]  K. R. Rao,et al.  BIFORE or Hadamard transform , 1971 .

[3]  Ta-mu Chien On Representations of Walsh Functions , 1975, IEEE Transactions on Electromagnetic Compatibility.

[4]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  J. E. Gibbs,et al.  Comments on Transformation of "Fourier" Power Spectra Into "Walsh" Power Spectra , 1971 .

[6]  Ralph Roskies,et al.  Fourier Descriptors for Plane Closed Curves , 1972, IEEE Transactions on Computers.

[7]  Hooshang Hemami,et al.  Identification of Three-Dimensional Objects Using Fourier Descriptors of the Boundary Curve , 1974, IEEE Trans. Syst. Man Cybern..

[8]  Ferdinand R. Ohnsorg,et al.  Spectral Modes of the Walsh-Hadamard Transform , 1971 .

[9]  K. R. Rao,et al.  Orthogonal Transforms for Digital Signal Processing , 1979, IEEE Transactions on Systems, Man and Cybernetics.

[10]  G. Robinson,et al.  Logical convolution and discrete Walsh and Fourier power spectra , 1972 .

[11]  T ZahnCharles,et al.  Fourier Descriptors for Plane Closed Curves , 1972 .

[12]  Harmonic analysis of periodic discontinuous functions (new method). Part I—Exponential functions , 1979, Proceedings of the IEEE.