How the Antimicrobial Peptides Kill Bacteria: Computational Physics Insights

In the present article, coarse grained Dissipative Particle Dynamics simula- tion with implementation of electrostatic interactions isdeveloped in constant pressure and surface tension ensemble to elucidate how the antimicrobial peptide molecules af- fect bilayer cell membrane structure and kill bacteria. Wefind that peptides with differ- ent chemical-physical properties exhibit different membrane obstructing mechanisms. Peptide molecules can destroy vital functions of the affected bacteria by translocat- ing across their membranes via worm-holes, or by associating with membrane lipids to form hydrophilic cores trapped inside the hydrophobic domain of the membranes. In the latter model, the affected membranes are strongly buckled, in accord with very recent experimental observations (G. E. Fantner et al., Nat. Nanotech., 5 (2010),pp. 280- 285).

[1]  Siewert J Marrink,et al.  Antimicrobial peptides in action. , 2006, Journal of the American Chemical Society.

[2]  Communications: Self-energy and corresponding virial contribution of electrostatic interactions in dissipative particle dynamics: Simulations of cationic lipid bilayers. , 2010, The Journal of chemical physics.

[3]  Philippe H. Hünenberger,et al.  Calculation of the group-based pressure in molecular simulations. I. A general formulation including Ewald and particle-particle-particle-mesh electrostatics , 2002 .

[4]  Y. Shai,et al.  Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. , 1999, Biochimica et biophysica acta.

[5]  K. Matsuzaki Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. , 1999, Biochimica et biophysica acta.

[6]  Angel E Garcia,et al.  Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes , 2007, Proceedings of the National Academy of Sciences.

[7]  Gregoria Illya,et al.  Coarse-grained simulation studies of peptide-induced pore formation. , 2008, Biophysical journal.

[8]  R. D. Groot Electrostatic interactions in dissipative particle dynamics—simulation of polyelectrolytes and anionic surfactants , 2003 .

[9]  Bernd Ensing,et al.  Structure and dynamics of model pore insertion into a membrane. , 2005, Biophysical journal.

[10]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[11]  Ask F Jakobsen,et al.  Constant-pressure and constant-surface tension simulations in dissipative particle dynamics. , 2005, The Journal of chemical physics.

[12]  R I Lehrer,et al.  Crystallization of antimicrobial pores in membranes: magainin and protegrin. , 2000, Biophysical journal.

[13]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[14]  Weihai Fang,et al.  Effects of induced tension and electrostatic interactions on the mechanisms of antimicrobial peptide translocation across lipid bilayer , 2009 .

[15]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[16]  M S Sansom,et al.  Simulation studies of the interaction of antimicrobial peptides and lipid bilayers. , 1999, Biochimica et biophysica acta.

[17]  K. Brogden Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.

[18]  Michael L Klein,et al.  Understanding nature's design for a nanosyringe. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Michael L Klein,et al.  Probing Membrane Insertion Activity of Antimicrobial Polymers via Coarse-grain Molecular Dynamics. , 2006, Journal of chemical theory and computation.

[20]  R. D. Groot,et al.  Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. , 2001, Biophysical journal.

[21]  E. Dufourc,et al.  Pore formation induced by an antimicrobial peptide: electrostatic effects. , 2008, Biophysical journal.

[22]  L. Guarente,et al.  Molecular Biology of Aging , 1999, Cell.

[23]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[24]  A. Baumgaertner,et al.  Stability of a melittin pore in a lipid bilayer: a molecular dynamics study. , 2000, Biophysical journal.

[25]  Georg E. Fantner,et al.  Kinetics of Antimicrobial Peptide Activity Measured on Individual Bacterial Cells Using High Speed AFM , 2010, Nature nanotechnology.

[26]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[27]  Berend Smit,et al.  Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. , 2005, Biophysical journal.