Overriding FUS autoregulation in mice triggers gain-of-toxic dysfunctions in RNA metabolism and autophagy-lysosome axis

Mutations in coding and non-coding regions of FUS cause amyotrophic lateral sclerosis (ALS). The latter mutations may exert toxicity by increasing FUS accumulation. We show here that broad expression within the nervous system of wild-type or either of two ALS-linked mutants of human FUS in mice produces progressive motor phenotypes accompanied by characteristic ALS-like pathology. FUS levels are autoregulated by a mechanism in which human FUS downregulates endogenous FUS at mRNA and protein levels. Increasing wild-type human FUS expression achieved by saturating this autoregulatory mechanism produces a rapidly progressive phenotype and dose-dependent lethality. Transcriptome analysis reveals mis-regulation of genes that are largely not observed upon FUS reduction. Likely mechanisms for FUS neurotoxicity include autophagy inhibition and defective RNA metabolism. Thus, our results reveal that overriding FUS autoregulation will trigger gain-of-function toxicity via altered autophagy-lysosome pathway and RNA metabolism function, highlighting a role for protein and RNA dyshomeostasis in FUS-mediated toxicity.

[1]  A. Musarò,et al.  Mechanisms Regulating Muscle Regeneration: Insights into the Interrelated and Time-Dependent Phases of Tissue Healing , 2020, Cells.

[2]  D. Ito,et al.  Extensive splicing changes in an ALS/FTD transgenic mouse model overexpressing cytoplasmic fused in sarcoma , 2020, Scientific Reports.

[3]  L. Dupuis,et al.  Role of RNA Binding Proteins with prion-like domains in muscle and neuromuscular diseases , 2020, Cell stress.

[4]  B. Traynor,et al.  The Overlapping Genetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia , 2020, Frontiers in Neuroscience.

[5]  P. Manque,et al.  Implications of Selective Autophagy Dysfunction for ALS Pathology , 2020, Cells.

[6]  C. Shaw,et al.  ALS/FTD-Linked Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives Disease Without Nuclear Loss-of-Function of FUS , 2018, Neuron.

[7]  Shuo-Chien Ling Synaptic Paths to Neurodegeneration: The Emerging Role of TDP-43 and FUS in Synaptic Functions , 2018, Neural plasticity.

[8]  R. López-González,et al.  Dysregulated molecular pathways in amyotrophic lateral sclerosis–frontotemporal dementia spectrum disorder , 2017, The EMBO journal.

[9]  W. Robberecht,et al.  HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients , 2017, Nature Communications.

[10]  B. Burke,et al.  Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in ‘FUSDelta14’ knockin mice , 2017, Brain : a journal of neurology.

[11]  Alessio Colantoni,et al.  FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons , 2017, Nature Communications.

[12]  Geng-Lin Li,et al.  Hearing Loss: Reestablish the Neural Plasticity in Regenerated Spiral Ganglion Neurons and Sensory Hair Cells 2018 , 2017, Neural plasticity.

[13]  Robert H. Brown,et al.  Decoding ALS: from genes to mechanism , 2016, Nature.

[14]  Norihiro Suzuki,et al.  Mislocated FUS is sufficient for gain-of-toxic-function amyotrophic lateral sclerosis phenotypes in mice. , 2016, Brain : a journal of neurology.

[15]  Lior Pachter,et al.  Differential analysis of RNA-seq incorporating quantification uncertainty , 2016, Nature Methods.

[16]  O. Mühlemann,et al.  Minor intron splicing is regulated by FUS and affected by ALS‐associated FUS mutants , 2016, EMBO Journal.

[17]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[18]  Xiang-Dong Fu,et al.  Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss , 2016, The EMBO journal.

[19]  J. Tapia,et al.  ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function , 2016, Nature Communications.

[20]  F. Gao,et al.  TDP‐43 loss of function increases TFEB activity and blocks autophagosome–lysosome fusion , 2015, The EMBO journal.

[21]  Bin Yu,et al.  Superheat: An R Package for Creating Beautiful and Extendable Heatmaps for Visualizing Complex Data , 2015, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[22]  B. Lenhard,et al.  GenomicInteractions: An R/Bioconductor package for manipulating and investigating chromatin interaction data , 2015, BMC Genomics.

[23]  M. Mesulam,et al.  FUS Interacts with HSP60 to Promote Mitochondrial Damage , 2015, PLoS genetics.

[24]  Yong Yu,et al.  FUS functions in coupling transcription to splicing by mediating an interaction between RNAP II and U1 snRNP , 2015, Proceedings of the National Academy of Sciences.

[25]  T. Cech,et al.  Biochemical Properties and Biological Functions of FET Proteins. , 2015, Annual review of biochemistry.

[26]  G. Sobue,et al.  Position-specific binding of FUS to nascent RNA regulates mRNA length , 2015, Genes & development.

[27]  Kevin F. Bieniek,et al.  Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease , 2015, Acta Neuropathologica.

[28]  G. Rouleau,et al.  Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). , 2015, Trends in genetics : TIG.

[29]  T. Hashikawa,et al.  FUS/TLS deficiency causes behavioral and pathological abnormalities distinct from amyotrophic lateral sclerosis , 2015, Acta neuropathologica communications.

[30]  Brittany N. Lasseigne,et al.  Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways , 2015, Science.

[31]  T. Wieland,et al.  Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia , 2015, Nature Neuroscience.

[32]  Tobias M. Rasse,et al.  Nuclear import factor transportin and arginine methyltransferase 1 modify FUS neurotoxicity in Drosophila , 2015, Neurobiology of Disease.

[33]  Gene W. Yeo,et al.  ALS-causative mutations in FUS/TLS confer gain- and loss-of-function by altered association with SMN and U1-snRNP , 2015, Nature Communications.

[34]  Michael Q. Zhang,et al.  Activity-dependent FUS dysregulation disrupts synaptic homeostasis , 2014, Proceedings of the National Academy of Sciences.

[35]  E. Holzbaur,et al.  Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation , 2014, Proceedings of the National Academy of Sciences.

[36]  T. Lloyd,et al.  The ALS gene FUS regulates synaptic transmission at the Drosophila neuromuscular junction. , 2014, Human molecular genetics.

[37]  I. Bozzoni,et al.  An ALS-associated mutation in the FUS 3′-UTR disrupts a microRNA–FUS regulatory circuitry , 2014, Nature Communications.

[38]  Jeroen van den Brink,et al.  The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3 , 2014, Nature Communications.

[39]  Li-Huei Tsai,et al.  ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. , 2014, The Journal of clinical investigation.

[40]  N. Mizushima,et al.  At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. , 2014, Trends in biochemical sciences.

[41]  M. Dalva,et al.  Defects in Synapse Structure and Function Precede Motor Neuron Degeneration in Drosophila Models of FUS-Related ALS , 2013, The Journal of Neuroscience.

[42]  T. Haystead,et al.  The RNA-binding protein Fus directs translation of localized mRNAs in APC-RNP granules , 2013, The Journal of cell biology.

[43]  P. Rossini,et al.  Mutations in the 3' untranslated region of FUS causing FUS overexpression are associated with amyotrophic lateral sclerosis. , 2013, Human molecular genetics.

[44]  G. Hicks,et al.  ALS-Associated FUS Mutations Result in Compromised FUS Alternative Splicing and Autoregulation , 2013, PLoS genetics.

[45]  Ewout J. N. Groen,et al.  ALS-associated mutations in FUS disrupt the axonal distribution and function of SMN. , 2013, Human molecular genetics.

[46]  Li-Huei Tsai,et al.  Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons , 2013, Nature Neuroscience.

[47]  D. Cleveland,et al.  Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis , 2013, Neuron.

[48]  R. Parker,et al.  Eukaryotic Stress Granules Are Cleared by Autophagy and Cdc48/VCP Function , 2013, Cell.

[49]  G. Rouleau,et al.  TARDBP and FUS Mutations Associated with Amyotrophic Lateral Sclerosis: Summary and Update , 2013, Human mutation.

[50]  T. Hortobágyi,et al.  ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules , 2013, Human molecular genetics.

[51]  Wim Robberecht,et al.  The changing scene of amyotrophic lateral sclerosis , 2013, Nature Reviews Neuroscience.

[52]  Gene W. Yeo,et al.  ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43 , 2013, Proceedings of the National Academy of Sciences.

[53]  Fumiaki Tanaka,et al.  Spliceosome integrity is defective in the motor neuron diseases ALS and SMA , 2013, EMBO molecular medicine.

[54]  S. Gygi,et al.  FUS-SMN protein interactions link the motor neuron diseases ALS and SMA. , 2012, Cell reports.

[55]  L. Pellizzoni,et al.  SMN Is Required for Sensory-Motor Circuit Function in Drosophila , 2012, Cell.

[56]  G. Mentis,et al.  An SMN-Dependent U12 Splicing Event Essential for Motor Circuit Function , 2012, Cell.

[57]  Stephanie C Huelga,et al.  Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs , 2012, Nature Neuroscience.

[58]  R. Nixon,et al.  Autophagy and neuronal cell death in neurological disorders. , 2012, Cold Spring Harbor perspectives in biology.

[59]  T. Hortobágyi,et al.  Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion , 2012, Acta Neuropathologica.

[60]  K. Tsai,et al.  Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43 , 2012, Proceedings of the National Academy of Sciences.

[61]  Nejc Haberman,et al.  Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain , 2012, Scientific Reports.

[62]  Kinji Ohno,et al.  Position-dependent FUS-RNA interactions regulate alternative splicing events and transcriptions , 2012, Scientific Reports.

[63]  Jimin Pei,et al.  Cell-free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels , 2012, Cell.

[64]  S. Pereson,et al.  A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study , 2012, The Lancet Neurology.

[65]  J. Jia,et al.  Nuclear localization sequence of FUS and induction of stress granules by ALS mutants , 2011, Neurobiology of Aging.

[66]  S. Ajroud‐Driss,et al.  SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. , 2011, Archives of neurology.

[67]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[68]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[69]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[70]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[71]  Gene W. Yeo,et al.  Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43 , 2011, Nature Neuroscience.

[72]  Michael J. O'Donovan,et al.  Early Functional Impairment of Sensory-Motor Connectivity in a Mouse Model of Spinal Muscular Atrophy , 2011, Neuron.

[73]  Sonja W. Scholz,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2010, Neuron.

[74]  Robert H. Brown,et al.  Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. , 2010, Human molecular genetics.

[75]  I. Mackenzie,et al.  ALS‐associated fused in sarcoma (FUS) mutations disrupt Transportin‐mediated nuclear import , 2010, The EMBO journal.

[76]  G. Bjørkøy,et al.  A reporter cell system to monitor autophagy based on p62/SQSTM1 , 2010, Autophagy.

[77]  A. Cuervo,et al.  Autophagy gone awry in neurodegenerative diseases , 2010, Nature Neuroscience.

[78]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[79]  O. King,et al.  Prion-like disorders: blurring the divide between transmissibility and infectivity , 2010, Journal of Cell Science.

[80]  D. Cleveland,et al.  TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. , 2010, Human molecular genetics.

[81]  N. Mizushima,et al.  Methods in Mammalian Autophagy Research , 2010, Cell.

[82]  D. Cleveland,et al.  Non–cell autonomous toxicity in neurodegenerative disorders: ALS and beyond , 2009, The Journal of cell biology.

[83]  J. Manley,et al.  The TET family of proteins: functions and roles in disease. , 2009, Journal of molecular cell biology.

[84]  H. Kretzschmar,et al.  A new subtype of frontotemporal lobar degeneration with FUS pathology. , 2009, Brain : a journal of neurology.

[85]  J. Morris,et al.  TARDBP 3′-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy , 2009, Acta Neuropathologica.

[86]  D. Cleveland,et al.  Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice , 2009, Proceedings of the National Academy of Sciences.

[87]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[88]  J. Haines,et al.  Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2009, Science.

[89]  Pornpimol Charoentong,et al.  ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks , 2009, Bioinform..

[90]  Jessica E. Young,et al.  Nutrient Deprivation Induces Neuronal Autophagy and Implicates Reduced Insulin Signaling in Neuroprotective Autophagy Activation* , 2009, Journal of Biological Chemistry.

[91]  B. McConkey,et al.  TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis , 2008, Nature Genetics.

[92]  Murray Grossman,et al.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis , 2008, The Lancet Neurology.

[93]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[94]  D. Gutmann,et al.  Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis , 2008, Nature Neuroscience.

[95]  H. Akiyama,et al.  TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2006, Biochemical and biophysical research communications.

[96]  K. Sleegers,et al.  APP duplication is sufficient to cause early onset Alzheimer's dementia with cerebral amyloid angiopathy. , 2006, Brain : a journal of neurology.

[97]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[98]  J. Collinge,et al.  ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B) , 2006, Neurology.

[99]  J. Grafman,et al.  Genetic Variability in CHMP2B and Frontotemporal Dementia , 2006, Neurodegenerative Diseases.

[100]  G. Kollias,et al.  Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia , 2006, Science.

[101]  T. Takumi,et al.  TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines , 2005, Journal of Cell Science.

[102]  Nobutaka Hirokawa,et al.  Kinesin Transports RNA Isolation and Characterization of an RNA-Transporting Granule , 2004, Neuron.

[103]  L. Bruijn,et al.  Unraveling the mechanisms involved in motor neuron degeneration in ALS. , 2004, Annual review of neuroscience.

[104]  Janel O. Johnson,et al.  α-Synuclein Locus Triplication Causes Parkinson's Disease , 2003, Science.

[105]  H. Ruley,et al.  Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death , 2000, Nature Genetics.

[106]  D. Schiffer,et al.  Reactive astrogliosis of the spinal cord in amyotrophic lateral sclerosis , 1996, Journal of the Neurological Sciences.

[107]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[108]  A. Singleton,et al.  alpha-Synuclein locus triplication causes Parkinson's disease. , 2003, Science.

[109]  Andrew E. Jaffe,et al.  Bioinformatics Applications Note Gene Expression the Sva Package for Removing Batch Effects and Other Unwanted Variation in High-throughput Experiments , 2022 .