Parameter estimation techniques for a class of nonlinear hysteresis models

This paper addresses the development of parameter estimation techniques for a class of models used to characterize hysteresis and constitutive nonlinearities inherent to ferroelectric, ferromagnetic and ferroelastic materials employed in a wide range of actuators and sensors. These models are formulated as integral equations with known kernels and unknown densities to be identified through least-squares techniques. Due to the compactness of the integral operators, the resulting discretized models inherit ill-posedness which must be accommodated through regularization. The accuracy of regularized finite-dimensional models is illustrated through comparison with experimental data.

[1]  T. R. Braun,et al.  ADVANCES IN MAGNETICS 1747 A Homogenized Energy Framework for Ferromagnetic Hysteresis , 2006 .

[2]  Ralph C. Smith Smart Material Systems , 2005 .

[3]  M. Dapino,et al.  A homogenized energy framework for ferromagnetic hysteresis , 2006, IEEE Transactions on Magnetics.

[4]  Robert C. Rogers,et al.  Compensation for hysteresis using bivariate Preisach models , 1997, Smart Structures.

[5]  R.V. Iyer,et al.  Hysteresis parameter identification with limited experimental data , 2004, IEEE Transactions on Magnetics.

[6]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[7]  Xiaobo Tan,et al.  Control of hysteresis: theory and experimental results , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[8]  Ram Venkataraman,et al.  On the identification of Preisach measures , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[9]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[10]  Joshua R. Smith,et al.  A Free Energy Model for Hysteresis in Ferroelectric Materials , 2003, Journal of Intelligent Material Systems and Structures.

[11]  Ram V. Iyer Recursive estimation of the Preisach density function for a smart actuator , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[12]  Ralph C. Smith,et al.  A free energy model for thin-film shape memory alloys , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[13]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[14]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[15]  Ralph C. Smith,et al.  Smart material systems - model development , 2005, Frontiers in applied mathematics.

[16]  Stefan Seelecke,et al.  A unified framework for modeling hysteresis in ferroic materials , 2006 .

[17]  Stefan Seelecke,et al.  Free energy model for hysteresis in magnetostrictive transducers , 2003 .

[18]  John T. Wen,et al.  Preisach modeling of piezoceramic and shape memory alloy hysteresis , 1997 .

[19]  Jordan E. Massad,et al.  A Domain Wall Model for Hysteresis in Ferroelastic Materials , 2003 .

[20]  Stefan Seelecke,et al.  Energy formulation for Preisach models , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[21]  Stefan Seelecke,et al.  A unified model for hysteresis in ferroic materials , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[22]  Ralph C. Smith,et al.  A temperature-dependent hysteresis model for relaxor ferroelectric compounds , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[23]  Craig L. Hom,et al.  Domain Wall Theory for Ferroelectric Hysteresis , 1999 .

[24]  P. Krishnaprasad,et al.  On a low-dimensional model for ferromagnetism , 2005 .

[25]  David W. L. Wang,et al.  Preisach model identification of a two-wire SMA actuator , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[26]  Stefan Seelecke,et al.  Shape memory alloy actuators in smart structures: Modeling and simulation , 2004 .

[27]  Arch W. Naylor,et al.  Linear Operator Theory in Engineering and Science , 1971 .

[28]  Jordan E. Massad,et al.  A homogenized free energy model for hysteresis in thin-film shape memory alloys , 2005 .

[29]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[30]  R.C. Smith,et al.  Experimental implementation of a model-based inverse filter to attenuate hysteresis in an atomic force microscope , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).