<jats:p>The purpose of the paper is to introduce a new analogue of Phillips-type Bernstein operators <jats:inline-formula>
<math xmlns="http://www.w3.org/1998/Math/MathML" id="M2">
<mfenced open="(" close=")">
<mrow>
<msubsup>
<mrow>
<mi mathvariant="script">B</mi>
</mrow>
<mrow>
<mi>m</mi>
<mo>,</mo>
<mi>q</mi>
</mrow>
<mrow>
<mi>u</mi>
</mrow>
</msubsup>
<mi>f</mi>
</mrow>
</mfenced>
<mfenced open="(" close=")">
<mrow>
<mi>u</mi>
<mo>,</mo>
<mi>v</mi>
</mrow>
</mfenced>
</math>
</jats:inline-formula> and <jats:inline-formula>
<math xmlns="http://www.w3.org/1998/Math/MathML" id="M3">
<mfenced open="(" close=")">
<mrow>
<msubsup>
<mrow>
<mi mathvariant="script">B</mi>
</mrow>
<mrow>
<mi>n</mi>
<mo>,</mo>
<mi>q</mi>
</mrow>
<mrow>
<mi>v</mi>
</mrow>
</msubsup>
<mi>f</mi>
</mrow>
</mfenced>
<mfenced open="(" close=")">
<mrow>
<mi>u</mi>
<mo>,</mo>
<mi>v</mi>
</mrow>
</mfenced>
</math>
</jats:inline-formula>, their products <jats:inline-formula>
<math xmlns="http://www.w3.org/1998/Math/MathML" id="M4">
<mfenced open="(" close=")">
<mrow>
<msub>
<mrow>
<mi mathvariant="script">P</mi>
</mrow>
<mrow>
<mi>m</mi>
<mi>n</mi>
<mo>,</mo>
<mi>q</mi>
</mrow>
</msub>
<mi>f</mi>
</mrow>
</mfenced>
<mfenced open="(" close=")">
<mrow>
<mi>u</mi>
<mo>,</mo>
<mi>v</mi>
</mrow>
</mfenced>
</math>
</jats:inline-formula> and <jats:inline-formula>
<math xmlns="http://www.w3.org/1998/Math/MathML" id="M5">
<mfenced open="(" close=")">
<mrow>
<msub>
<mrow>
<mi mathvariant="script">Q</mi>
</mrow>
<mrow>
<mi>n</mi>
<mi>m</mi>
<mo>,</mo>
<mi>q</mi>
</mrow>
</msub>
<mi>f</mi>
</mrow>
</mfenced>
<mfenced open="(" close=")">
<mrow>
<mi>u</mi>
<mo>,</mo>
<mi>v</mi>
</mrow>
</mfenced>
</math>
</jats:inline-formula>, their Boolean sums <jats:inline-formula>
<math xmlns="http://www.w3.org/1998/Math/MathML" id="M6">
<mfenced open="(" close=")">
<mrow>
<msub>
<mrow>
<mi mathvariant="script">S</mi>
</mrow>
<mrow>
<mi>m</mi>
<mi>n</mi>
<mo>,</mo>
<mi>q</mi>
</mrow>
</msub>
<mi>f</mi>
</mrow>
</mfenced>
<mfenced open="(" close=")">
<mrow>
<mi>u</mi>
<mo>,</mo>
<mi>v</mi>
</mrow>
</mfenced>
</math>
</jats:inline-formula> and <jats:inline-formula>
<math xmlns="http://www.w3.org/1998/Math/MathML" id="M7">
<mfenced open="(" close=")">
<mrow>
<msub>
<mrow>
<mi mathvariant="script">T</mi>
</mrow>
<mrow>
<mi>n</mi>
<mi>m</mi>
<mo>,</mo>
<mi>q</mi>
</mrow>
</msub>
<mi>f</mi>
</mrow>
</mfenced>
<mfenced open="(" close=")">
<mrow>
<mi>u</mi>
<mo>,</mo>
<mi>v</mi>
</mrow>
</mfenced>
</math>
</jats:inline-formula> on triangle <jats:inline-formula>
<math xmlns="http://www.w3.org/1998/Math/MathML" id="M8">
<msub>
<mrow>
<mi mathvariant="script">T</mi>
</mrow>
<mrow>
<mi>h</mi>
</mrow>
</msub>
</math>
</jats:inline-formula>, which interpolate a given function on the edges, respectively, at the vertices of triangle using quantum analogue. Based on Peano’s theorem and using modulus of continuity, the remainders of the approximation formula of corresponding operators are evaluated. Graphical representations are added to demonstrate consistency to theoretical findings. It has been shown that parameter <jats:inline-formula>
<math xmlns="http://www.w3.org/1998/Math/MathML" id="M9">
<mi>q</mi>
</math>
</jats:inline-formula> provides flexibility for approximation and reduces to its classical case for <jats:inline-formula>
<math xmlns="http://www.w3.org/1998/Math/MathML" id="M10">
<mi>q</mi>
<mo>=</mo>
<mn>1</mn>
</math>
</jats:inline-formula>.</jats:p>
[1]
Sofiya Ostrovska,et al.
On the Lupaş $q$-Analogue of the Bernstein Operator
,
2006
.
[2]
Robert E. Barnhill,et al.
Error bounds for smooth interpolation in triangles
,
1974
.
[3]
A. Aral,et al.
On Pointwise Convergence of q-Bernstein Operators and Their q-Derivatives
,
2015
.
[4]
George M. Phillips,et al.
A generalization of the Bernstein polynomials based on the q-integers
,
2000,
The ANZIAM Journal.
[5]
S. A. Mohiuddine,et al.
Approximation by (p, q)-Baskakov–Durrmeyer–Stancu Operators
,
2018
.
[6]
D. D. Stancu.
The Remainder of Certain Linear Approximation Formulas in Two Variables
,
1964
.
[7]
S. A. Mohiuddine,et al.
Approximation by Bivariate (p, q)-Bernstein–Kantorovich Operators
,
2018
.
[8]
Stancu Type Baskakov—Durrmeyer Operators and Approximation Properties
,
2020
.
[9]
Iterated Boolean Sums of Bernstein Type Operators
,
2020
.
[10]
D. Baleanu,et al.
Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation
,
2020
.
[11]
Mohammad Mursaleen,et al.
Corrigendum to: "Some approximation results by (p, q)-analogue of Bernstein-Stancu operators" [Appl. Math. Comput. 264(2015)392-402]
,
2015,
Appl. Math. Comput..
[12]
Mohammad Mursaleen,et al.
Approximation properties and error estimation of q-Bernstein shifted operators
,
2019,
Numerical Algorithms.
[13]
Dan Barbosu.
On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators
,
2018,
Constructive Mathematical Analysis.
[14]
W. J. Gordon,et al.
Smooth interpolation in triangles
,
1973
.
[15]
Khursheed J. Ansari,et al.
Some approximation results on Bleimann-Butzer-Hahn operators defined by (p,q)-integers
,
2015,
1505.00392.
[16]
H. Oruç,et al.
q -Bernstein polynomials and Bézier curves
,
2003
.
[17]
Robert E. Barnhill,et al.
Surfaces in computer aided geometric design: a survey with new results
,
1985,
Comput. Aided Geom. Des..
[18]
Bernie L. Hulme,et al.
A new bicubic interpolation over right triangles
,
1972
.
[19]
Ying Chu,et al.
Generalized Bézier curves and surfaces based on Lupaş q-analogue of Bernstein operator
,
2014,
J. Comput. Appl. Math..
[20]
Rida T. Farouki,et al.
Algorithms for polynomials in Bernstein form
,
1988,
Comput. Aided Geom. Des..
[21]
A. K. Cline,et al.
A triangle-based $C^1$ interpolation method
,
1984
.
[22]
A. Holhoş.
The Product of Two Functions Using Positive Linear Operators
,
2020
.