16.1: Hysteresis-free Blue-phase LCDs

Electric field effect on the hysteresis of a polymer-stabilized blue-phase liquid crystal display is investigated experimentally and by simulation. Based on the established guidelines, we propose a new electrode structure to eliminate hysteresis while keeping high transmittance and high contrast ratio.

[1]  Masayuki Yokota,et al.  Polymer-stabilized liquid crystal blue phases , 2002, Nature materials.

[2]  Yung-Hsiang Chiu,et al.  Critical Field for a Hysteresis-Free BPLC Device , 2011, Journal of Display Technology.

[3]  Shin-Tson Wu,et al.  Submillisecond Gray-Level Response Time of a Polymer-Stabilized Blue-Phase Liquid Crystal , 2010, Journal of Display Technology.

[4]  Shin‐Tson Wu,et al.  Prospects of emerging polymer‐stabilized blue‐phase liquid‐crystal displays , 2010 .

[5]  Shin‐Tson Wu,et al.  Electro-optics of polymer-stabilized blue phase liquid crystal displays , 2009 .

[6]  Shin-Tson Wu,et al.  Low voltage blue-phase liquid crystal displays , 2009 .

[7]  Toshihiko Nagamura,et al.  Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range , 2005 .

[8]  Heinz-S. Kitzerow,et al.  The effect of electric fields on blue phases , 1991 .

[9]  Shin-Tson Wu,et al.  Hysteresis Effects in Blue-Phase Liquid Crystals , 2010, Journal of Display Technology.

[10]  Shin-Tson Wu,et al.  Electrode Dimension Effects on Blue-Phase Liquid Crystal Displays , 2011, Journal of Display Technology.

[11]  Shin-Tson Wu,et al.  A large Kerr constant polymer-stabilized blue phase liquid crystal , 2011 .

[12]  Shin-Tson Wu,et al.  Modeling of Blue Phase Liquid Crystal Displays , 2009, Journal of Display Technology.

[13]  Shin-ichi Yamamoto,et al.  39.1: Invited Paper: Optically Isotropic Nano‐Structured Liquid Crystal Composites for Display Applications , 2009 .