TWO LIKELIHOOD-BASED SEMIPARAMETRIC ESTIMATION METHODS FOR PANEL COUNT DATA WITH COVARIATES

We consider estimation in a particular semiparametric regression model for the mean of a counting process with \panel count" data. The basic model assumption is that the conditional mean function of the counting process is of the form EfN(t)jZg = exp(fl T Z)⁄0(t) where Z is a vector of covariates and ⁄0 is the baseline mean function. The \panel count" observation scheme involves observation of the counting processN for an individual at a random number K of random time points; both the number and the locations of these time points may difier across individuals. We study semiparametric maximum pseudo-likelihood and maximum likelihood estimators of the unknown parameters (fl0;⁄0) derived on the basis of a nonhomogeneous Poisson process assumption. The pseudo-likelihood estimator is fairly easy to compute, while the maximum likelihood estimator poses more challenges from the computational perspective. We study asymptotic properties of both estimators assuming that the proportional mean model holds, but dropping the Poisson process assumption used to derive the estimators. In particular we establish asymptotic normality for the estimators of the regression parameter fl0 under appropriate hypotheses. The results show that our estimation procedures are robust in the sense that the estimators converge to the truth regardless of the underlying counting process.

[1]  J. Kalbfleisch,et al.  The Analysis of Panel Data under a Markov Assumption , 1985 .

[2]  Susan A. Murphy,et al.  Observed information in semi-parametric models , 1999 .

[3]  D. Byar,et al.  Comparisons of placebo, pyridoxine, and topical thiotepa in preventing recurrence of stage I bladder cancer. , 1977, Urology.

[4]  A. V. D. Vaart,et al.  Lectures on probability theory and statistics , 2002 .

[5]  M. Talagrand,et al.  Lectures on Probability Theory and Statistics , 2000 .

[6]  Lee-Jen Wei,et al.  Regression Parameter Estimation from Panel Counts , 2003 .

[7]  Stephen Wolfram,et al.  The Mathematica book (3rd ed.) , 1996 .

[8]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[9]  Zhiliang Ying,et al.  Semiparametric regression for the mean and rate functions of recurrent events , 2000 .

[10]  Susan A. Murphy,et al.  Semiparametric likelihood ratio inference , 1997 .

[11]  Lee-Jen Wei,et al.  Regression analysis of panel count data with covariate‐dependent observation and censoring times , 2000 .

[12]  Jong S. Kim,et al.  EFFICIENT ESTIMATION FOR THE PROPORTIONAL HAZARDS MODEL WITH LEFT-TRUNCATED AND "CASE 1" INTERVAL-CENSORED DATA , 2003 .

[13]  D. Gaver,et al.  Robust empirical bayes analyses of event rates , 1987 .

[14]  A. W. van der Vaart,et al.  On Profile Likelihood , 2000 .

[15]  M. Wodzicki Lecture Notes in Math , 1984 .

[16]  J. Wellner,et al.  A Semiparametric Regression Model for Panel Count Data: When Do Pseudo-likelihood Estimators Become Badly Inefficient? , 2004 .

[17]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[18]  Jerald F. Lawless,et al.  Some Simple Robust Methods for the Analysis of Recurrent Events , 1995 .

[19]  Ying Zhang,et al.  A semiparametric pseudolikelihood estimation method for panel count data , 2002 .

[20]  Jian Huang,et al.  Efficient Estimation for the Cox Model with Interval Censoring Efficient Estimation for the Cox Model with Interval Censoring , 1994 .

[21]  J. Lawless Regression Methods for Poisson Process Data , 1987 .

[22]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[23]  Geurt Jongbloed,et al.  The Iterative Convex Minorant Algorithm for Nonparametric Estimation , 1998 .

[24]  Jon A. Wellner,et al.  Two estimators of the mean of a counting process with panel count data , 2000 .

[25]  Ying Zhang,et al.  Nonparametric k-sample tests with panel count data , 2006 .

[26]  L. J. Wei,et al.  Regression analysis of multivariate incomplete failure time data by modeling marginal distributions , 1989 .

[27]  D. Cox,et al.  A note on pseudolikelihood constructed from marginal densities , 2004 .

[28]  P F Thall,et al.  Mixed Poisson likelihood regression models for longitudinal interval count data. , 1988, Biometrics.

[29]  D. F. Andrews,et al.  Data : a collection of problems from many fields for the student and research worker , 1985 .

[30]  A. V. D. Vaart Asymptotic Statistics: Semiparametric Models , 1998 .

[31]  John M. Lachin,et al.  Analysis of Recurrent Events: Nonparametric Methods for Random-Interval Count Data , 1988 .

[32]  Jon A. Wellner,et al.  Likelihood Ratio Tests for Monotone Functions , 2001 .

[33]  C. Dean,et al.  Efficiency Lost by Analyzing Counts Rather than Event Times in Poisson and Overdispersed Poisson Regression Models , 1997 .

[34]  J. Lawless Negative binomial and mixed Poisson regression , 1987 .

[35]  M. Banerjee Likelihood Based Inference For Monotone Functions: Towards a General Theory , 2005 .

[36]  R J Cook,et al.  Robust tests for treatment comparisons based on recurrent event responses. , 1996, Biometrics.

[37]  G A Whitmore,et al.  Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes. , 1997, Biometrics.