On the dependence structure of wavelet coefficients for spherical random fields

We consider the correlation structure of the random coefficients for a class of wavelet systems on the sphere (labelled Mexican needlets) which was recently introduced in the literature by [D. Geller, A. Mayeli, Nearly tight frames and space-frequency analysis on compact manifolds, Preprint, 2007. arxiv:0706.3642v2]. We provide necessary and sufficient conditions for these coefficients to be asymptotically uncorrelated in the real and in the frequency domain. Here, the asymptotic theory is developed in the high frequency sense. Statistical applications are also discussed, in particular with reference to the analysis of cosmological data.

[1]  Daryl Geller,et al.  Nearly tight frames and space-frequency analysis on compact manifolds , 2007, 0706.3642.

[2]  P. Baldi,et al.  Subsampling needlet coefficients on the sphere , 2007, 0706.4169.

[3]  Gabriele Steidl,et al.  Frames and Coorbit Theory on Homogeneous Spaces with a Special Guidance on the Sphere , 2007 .

[4]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[5]  G. Fay,et al.  Consistency of a needlet spectral estimator on the sphere , 2008, 0807.2162.

[6]  Pencho Petrushev,et al.  Decomposition of Besov and Triebel–Lizorkin spaces on the sphere , 2006 .

[7]  Giovanni Peccati,et al.  Central limit theorems for sequences of multiple stochastic integrals , 2005 .

[8]  Domenico Marinucci,et al.  Integrated Sachs-Wolfe effect from the cross correlation of WMAP 3 year and the NRAO VLA sky survey data: New results and constraints on dark energy , 2006 .

[9]  R. Wilson Modern Cosmology , 2004 .

[10]  Fr'ed'eric Guilloux,et al.  Practical wavelet design on the sphere , 2007, 0706.2598.

[11]  Pierre Vandergheynst,et al.  Wavelets on the Two-Sphere and Other Conic Sections , 2007 .

[12]  Domenico Marinucci,et al.  Search for non-Gaussianity in pixel, harmonic and wavelet space: compared and combined , 2004 .

[13]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[14]  J. Faraut Analyse sur les groupes de Lie : une introduction , 2006 .

[15]  L. Xiaohong Needlet Analysis of Spherical Random Fields , 2009 .

[16]  Paolo Baldi,et al.  Spherical needlets for cosmic microwave background data analysis , 2008 .

[17]  Azita Mayeli Asymptotic Uncorrelation for Mexican Needlets , 2008 .

[18]  J. D. McEwen,et al.  Complex Data Processing: Fast Wavelet Analysis on the Sphere , 2007, 0704.3144.

[19]  D. Marinucci A central limit theorem and higher order results for the angular bispectrum , 2005, math/0509430.

[20]  P. Baldi,et al.  Spherical Needlets for CMB Data Analysis , 2007, 0707.0844.

[21]  J. Delabrouille,et al.  CMB power spectrum estimation using wavelets , 2008, 0807.1113.

[22]  P. Baldi,et al.  Asymptotics for spherical needlets , 2006, math/0606599.

[23]  Pencho Petrushev,et al.  Localized Tight Frames on Spheres , 2006, SIAM J. Math. Anal..

[24]  Domenico Marinucci,et al.  The needlets bispectrum , 2008, 0802.4020.

[25]  V. Havin The Uncertainty Principle in Harmonic Analysis , 1994 .

[26]  J. Cardoso,et al.  A full sky, low foreground, high resolution CMB map from WMAP , 2008, 0807.0773.

[27]  D. Mattis Quantum Theory of Angular Momentum , 1981 .

[28]  M. Holschneider,et al.  Poisson Wavelets on the Sphere , 2007 .

[29]  Domenico Marinucci,et al.  AN ESTIMATE OF THE PRIMORDIAL NON-GAUSSIANITY PARAMETER fNL USING THE NEEDLET BISPECTRUM FROM WMAP , 2009, 0901.3154.

[30]  M. P. Hobson,et al.  Cosmological Applications of a Wavelet Analysis on the Sphere , 2007, 0704.3158.

[31]  Willi Freeden,et al.  Orthogonal and Nonorthogonal Multiresolution Analysis, Scale Discrete and Exact Fully Discrete Wavelet Transform on the Sphere , 1998 .

[32]  Daniela Rosca Wavelet Bases on the Sphere Obtained by Radial Projection , 2007 .

[33]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .