Prospects for terabit-scale nanoelectronic memories
暂无分享,去创建一个
[1] Richard W. Hamming,et al. Error detecting and error correcting codes , 1950 .
[2] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[3] M. Y. Hsiao,et al. A class of optimal minimum odd-weight-column SEC-DED codes , 1970 .
[4] Israel Koren,et al. Fault tolerance in VLSI circuits , 1990, Computer.
[5] C. H. Stapper,et al. High-speed on-chip ECC for synergistic fault-tolerance memory chips , 1991 .
[6] Charles H. Stapper,et al. Synergistic Fault-Tolerance for Memory Chips , 1992, IEEE Trans. Computers.
[7] Jacob K. White,et al. Fast capacitance extraction of general three-dimensional structures , 1992 .
[8] Gregory S. Snider,et al. A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .
[9] Effect of island length on the Coulomb modulation in single-electron transistors , 1998 .
[10] K. L. Jensen,et al. Field emitter arrays for plasma and microwave source applications , 1999 .
[11] Paul L. McEuen,et al. Nanomechanical oscillations in a single-C60 transistor , 2000, Nature.
[12] K. Likharev. NOVORAM: A New Concept for Fast, Bit-Addressable Nonvolatile Memories , 2000 .
[13] Konstantin K. Likharev,et al. Riding the crest of a new wave in memory [NOVORAM] , 2000 .
[14] Janos H. Fendler,et al. Chemical Self-assembly for Electronic Applications , 2001 .
[15] S. Folling,et al. Single-electron latching switches as nanoscale synapses , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).
[16] C. M. Sotomayor Torres,et al. Nanoimprint lithography: challenges and prospects , 2001 .
[17] Zhenan Bao,et al. Conductance of small molecular junctions. , 2002, Physical review letters.
[18] Béla Bollobás,et al. Modern Graph Theory , 2002, Graduate Texts in Mathematics.
[19] Correlated electron tunneling in the single-molecule nanosystems , 2002 .
[20] V. V. Shorokhov,et al. Simulation of characteristics of a molecular single-electron tunneling transistor with a discrete energy spectrum of the central electrode , 2002 .
[21] Jonas I. Goldsmith,et al. Coulomb blockade and the Kondo effect in single-atom transistors , 2002, Nature.
[22] S.K. Iyer,et al. Electrically programmable fuse (eFUSE) using electromigration in silicides , 2002, IEEE Electron Device Letters.
[23] A. Korotkov. Analysis of integrated single-electron memory operation , 2002, cond-mat/0206016.
[24] Özgür Türel,et al. CrossNets: possible neuromorphic networks based on nanoscale components , 2003, Int. J. Circuit Theory Appl..
[25] R. J. Luyken,et al. Concepts for hybrid CMOS-molecular non-volatile memories , 2003 .
[26] J. F. Stoddart,et al. Nanoscale molecular-switch crossbar circuits , 2003 .
[27] Konstantin K. Likharev,et al. Electronics Below 10 nm , 2003 .
[28] André DeHon,et al. Stochastic assembly of sublithographic nanoscale interfaces , 2003 .
[29] Seth Copen Goldstein,et al. Molecular electronics: from devices and interconnect to circuits and architecture , 2003, Proc. IEEE.
[30] Jin-Fu Li,et al. Built-in redundancy analysis for memory yield improvement , 2003, IEEE Trans. Reliab..
[31] C. Lieber,et al. Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems , 2003, Science.
[32] Jean-Luc Brédas,et al. Single-electron transistor of a single organic molecule with access to several redox states , 2003, Nature.
[33] Chongwu Zhou,et al. Multilevel memory based on molecular devices , 2004 .
[34] Konstantin K. Likharev,et al. Neuromorphic architectures for nanoelectronic circuits , 2004, Int. J. Circuit Theory Appl..
[35] Konstantin K. Likharev,et al. CMOL: A New Concept for Nanoelectronics , 2005 .
[36] D. Strukov,et al. CMOL: Devices, Circuits, and Architectures , 2006 .