A viscoplastic theory applied to copper

A phenomenologically based viscoplastic model is derived for copper. The model is thermodynamically constrained by the condition of material dissipativity. Two internal state variables are considered. The back stress accounts for strain-induced anisotropy, or kinematic hardening. The drag stress accounts for isotropic hardening. Static and dynamic recovery terms are not coupled in either evolutionary equation. The evolution of drag stress depends on static recovery, while the evolution of back stress depends on dynamic recovery. The material constants are determined from isothermal data. Model predictions are compared with experimental data for thermomechanical test conditions. They are in good agreement at the hot end of the loading cycle, but the model overpredicts the stress response at the cold end of the cycle.