Temporal OBDA with LTL and DL-Lite

We investigate various types of query rewriting over ontologies given in the standard temporal logic LTL as well as combinations of LTL with DL-Lite logics. In particular, we consider FO(<)-rewritings that can use the temporal precedence relation, FO(<; +)-rewritings that can also employ the arithmetic predicate PLUS, and rewritings to fi�nite automata with data given on the automaton tape.

[1]  Franz Baader,et al.  Temporalizing Ontology-Based Data Access , 2013, CADE.

[2]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[3]  Anthony Widjaja To Unary finite automata vs. arithmetic progressions , 2008 .

[4]  Szymon Klarman,et al.  Towards a Unifying Approach to Representing and Querying Temporal Data in Description Logics , 2012, RR.

[5]  Diego Calvanese,et al.  The DL-Lite Family and Relations , 2009, J. Artif. Intell. Res..

[6]  Marek Chrobak,et al.  Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..

[7]  Stefan Borgwardt,et al.  Temporal Query Answering in the Description Logic DL-Lite , 2013, FroCos.

[8]  Clare Dixon,et al.  Clausal temporal resolution , 1999, TOCL.

[9]  Howard Straubing,et al.  An Introduction to Finite Automata and their Connection to Logic , 2010, Modern Applications of Automata Theory.

[10]  Anthony Widjaja Lin Unary finite automata vs. arithmetic progressions , 2009, Inf. Process. Lett..

[11]  Thomas Schwentick,et al.  Partially-Ordered Two-Way Automata: A New Characterization of DA , 2001, Developments in Language Theory.

[12]  Howard Straubing,et al.  Superlinear Lower Bounds for Bounded-Width Branching Programs , 1995, J. Comput. Syst. Sci..

[13]  Howard Straubing,et al.  Regular Languages in NC¹ , 1992, J. Comput. Syst. Sci..

[14]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[15]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[16]  Neil Immerman,et al.  Descriptive Complexity , 1999, Graduate Texts in Computer Science.

[17]  Alessandro Artale,et al.  The Complexity of Clausal Fragments of LTL , 2013, LPAR.

[18]  Frank Wolter,et al.  Temporal Description Logic for Ontology-Based Data Access , 2013, IJCAI.